Dietary flavonoids are ubiquitous and are marketed as supplements. Characterized as antioxidants, they offer protection against a number of degenerative diseases. Flavonoid mechanics involve free radical scavenging, metal chelation, and substrate association. The skeletal structure of flavonoids is a fused ring system modified by hydroxyl, sugar, and carbohydrate additions. Flavone is a structurally simple flavonoid. Quercetin and its glycosidic analog rutin are complex structures. Using a DNA oxidation/cleavage assay, flavone reduces DNA nicking by 91%. Depending on the solvent system used, quercetin can either increase or decrease DNA oxidation. Rutin exhibits neither pro- nor antioxidant activity. The molecular interactions responsible for these results are defined for flavone. 1) Flavone intercalates into DNA and saturates DNA at a 1/3.5 flavone:DNA molar ratio. 3) Flavone reduces iron-dependent DNA oxidation. 4) Flavone interacts with quercetin to enhance DNA protection. These results characterize the primary activities of a simple flavonoid.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-2006 |
Date | 13 December 2003 |
Creators | Dean, Jennifer Dawn |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the authors. |
Page generated in 0.0022 seconds