Flavonoids are a class of plant metabolites with a C6-C3-C6 structure. They are responsible for a large range of biological functions including UV protection, pigmentation, and anti-microbial properties. Citrus paradisi, the grapefruit, contains a wide variety of flavonoids, including the target flavonols which are characterized by a hydroxyl group at the C3 position. A glucose molecule is added to flavonols by 3-Oglucosyltransferases (3-O-GTs). C. paradisi F3-O-GT only glucosylates flavonols; however, Vitis vinifera (grape) 3-O-GT can accept both flavonols and anthocyanidins. The two enzymes have some identity with one another but sequence alignment pinpointed several areas of non-homology. Homology modeling using the crystallized structure of the V. vinifera 3-GT revealed sites within the non-homologous areas that could influence the binding site most directly. The 382 site was of particular interest with arginine in C. paradisi changed to tryptophan in V. vinifera, a much bulkier and non-charged amino acid. Site-directed mutagenis was performed to form the R382W mutant line and transformed into yeast for expression after induction with methanol. Western blot was used to determine the optimal protein induction time, after which the cells were harvested and broken to extract the proteins. Isolation and purification of the protein in question allows for enzyme analysis. This is performed by measuring incorporation of radioactive glucose onto various substrates from each flavonoid class. High counts indicate that the enzyme is active upon the substrate while low counts indicate little to no activity. Characterization will also be performed by varying reaction conditions. Thus, the optimal pH, temperature, substrate quantity, enzyme quantity, and reaction duration can be determined for this specific mutant. These experiments will determine if the R382W mutation has a significant impact on the substrate specificity or reaction conditions for the enzyme. A change in activity to include other classes of flavonoids besides flavonols indicates that the mutation site has a direct impact on the conformation of the binding site. Failure of the mutation to change substrate specificity still provides valuable information for the structure and function of the enzyme. This has implications for engineering enzymes to perform specific functions.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-1352 |
Date | 09 April 2015 |
Creators | King, Kathleen, Shivakumar, Devaiah P., McIntosh, Cecelia A. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0026 seconds