Le mélange des quarks est décrit dans le modèle standard de la physique des particules par le mécanisme de Cabibbo-Kobayashi-Maskawa (CKM). À ce jour, l'angle gamma du triangle d'unitarité est un des paramètres de ce mécanisme mesuré avec la moins bonne précision. La mesure de cet angle sert de référence pour le modèle standard, puisqu'elle peut être réalisée sans contribution significative de nouvelle physique. La précision actuelle de la meilleure mesure directe de gamma est d'environ 10°, alors que les ajustements globaux des paramètres CKM, potentiellement sujets à une contribution de nouvelle physique, déterminent cet angle à quelques degrés près. Par conséquent, une mesure directe précise de cette quantité est nécessaire pour contraindre d'avantage le triangle d'unitarité de la matrice CKM et ainsi tester la cohérence de ce modèle. Cette thèse présente une mesure de gamma par une analyse de Dalitz du canal B0->DK*0, avec une désintégration du méson D en K0Spipi. Elle est basée sur les 3 fb⁻¹ de données enregistrés par LHCb pendant le Run I du LHC, à une énergie de collision proton-proton dans le centre de masse de 7 et 8 TeV. Ce canal est sensible à gamma par l'interférence entre les transitions b->u et b->c. La mesure des observables de violation de CP réalisée est x- = -0.09 ^{+0.13}_{-0.13} ± 0.09 ± 0.01 , x+ = -0.10 ^{+0.27}_{-0.26} ± 0.06 ± 0.01 , y- = 0.23 ^{+0.15}_{-0.16} ± 0.04 ± 0.01 , y+ = -0.74 ^{+0.23}_{-0.26} ± 0.07 ± 0.01 , où le première incertitude est statistique, la deuxième est l'incertitude systématique expérimentale et la troisième est l'incertitude systématique venant du modèle de Dalitz. Une interprétation fréquentiste de ces observables donne rB0 = 0.39 ± 0.13 , deltaB0 = ( 186^{+24}_{-23} )° , gamma = ( 77^{+23}_{-24})° , où rB0 est le module du rapport des amplitudes des désintégrations supprimées et favorisées et deltaB0 la différence de phase forte entre ces deux désintégrations. Par ailleurs, un travail sur l'optimisation de la reconstruction des photons pour la mise à niveau du détecteur LHCb est aussi présenté. Lors du Run III du LHC, la luminosité instantanée reçue par LHCb sera augmentée d'un facteur cinq, générant un plus grand recouvrement entre les cascades se développant dans le calorimètre électromagnétique. L'étude montre que l'effet de ce recouvrement entre les gerbes est limité en réduisant la taille des clusters utilisés pour la détection des photons, tout en évitant une diminution significative de l'énergie reconstruite. Avec des corrections adaptées, la nouvelle reconstruction développée améliore la résolution en masse de 7 à 12%, suivant la région du calorimètre considérée. / Quark mixing is described in the standard model of particle physics with the Cabibbo-Kobayashi-Maskawa mecanism. The angle gamma of the unitarity triangle is one of the parameters of this mecanism that is still determined with a large uncertainty. It can be measured without significant contribution of new physics, making it a standard model key measurement. The current precision of the best direct measurement of gamma is approximately 10°, whereas the global fits of the CKM parameters determine this angle up to a few degrees. Therefore precise measurement of this quantity is needed to further constrain the Unitarity Triangle of the CKM matrix, and check the consistency of the theory. This thesis reports a measurement of gamma with a Dalitz analysis of the B0->DK*0 channel where the D meson decays into K0Spipi, based on the 3 fb⁻¹ of proton-proton collision data collected by LHCb during the LHC Run I, at the centre-of-mass energy of 7 and 8 TeV. This channel is sensitive to gamma through the interference between the b->u and b->c transitions. The CP violation observables are measured to be x- = -0.09 ^{+0.13}_{-0.13} ± 0.09 ± 0.01 , x+ = -0.10 ^{+0.27}_{-0.26} ± 0.06 ± 0.01 , y- = 0.23 ^{+0.15}_{-0.16} ± 0.04 ± 0.01 , y+ = -0.74 ^{+0.23}_{-0.26} ± 0.07 ± 0.01 , where the first uncertainty is statistical, the second is the experimental systematic uncertainty and the third is the systematic uncertainty due to the Dalitz model. A frequentist interpretation of these observables leads to rB0 = 0.39±0.13 , deltaB0 = ( 186^{+24}_{-23} )°, gamma = ( 77^{+23}_{-24} )° , where rB0 is the magnitude of the ratio between the suppressed and favoured decays and deltaB0 the strong phase difference between these two decays. In addition, the work performed on the optimisation of the photon reconstruction for the upgraded LHCb detector is reported. During LHC Run III, the LHCb instantaneous luminosity will be increased by a factor five, implying a larger shower overlap in the electromagnetic calorimeter. The study shows that reducing the cluster size used in the photon reconstruction limits the effect of the overlap between the showers, without inducing a significant energy leakage. With some dedicated corrections, the new cluster reconstruction improves the Bs->Phi gamma mass resolution by 7 to 12%, depending on the calorimeter region.
Identifer | oai:union.ndltd.org:theses.fr/2015PA112175 |
Date | 10 September 2015 |
Creators | Vallier, Alexis |
Contributors | Paris 11, Machefert, Frederic |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0029 seconds