This dissertation describes research concerned with the use of advanced measurement techniques for the control of robotic manufacturing processes. The work focused on improving the state of technology in the precision robotic machining of components within the aerospace manufacturing industry within Australia. Specific contributions are the development of schemes for the use of advanced measurement equipment in precision machining operations and to apply flexible manufacturing techniques in automated manufacturing. The outcome of the research enables placement of a robotic end effector to drill a hole with a positional accuracy of 300 micron, employing an Indoor Global Positioning System for control of the drilling process. This can be accomplished within a working area of 35 square metres where the robot system and/or part positions may be varied dynamically during the process. Large aerospace structures are capable of flexing during manufacturing operations due to their physical size and low modulus of rigidity. This research work provided a framework for determining the appropriate type of automation and metrology systems needed for dynamic control suited to the precision drilling of holes in large aerospace components.
Identifer | oai:union.ndltd.org:ADTP/210296 |
Date | January 2007 |
Creators | Newberry, John Christopher, john.newberry@rmit.edu.au |
Publisher | RMIT University. Aerospace, Mechanical and Manufacturing Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://www.rmit.edu.au/help/disclaimer, Copyright John Christopher Newberry |
Page generated in 0.0018 seconds