Este trabalho investiga um procedimento para retroanálise utilizando Redes Neurais Artificiais (RNAs). Nesta pesquisa foram utilizadas 35.472 bacias de deflexões hipotéticas, criadas pelo programa ELSYM5. A base de dados de treinamento das RNAs consistiu dessas bacias de deflexão e dos módulos e espessuras que as geraram. A camada de entrada das RNAs foi compostas da(s) espessura(s) da(s) camada(s) do pavimento, da bacia de deflexão (na simulação com a viga Benkelman, além desses parâmetros, incluiu-se o raio de curvatura (R)) e a camada de saída foi composta pelos módulos resilientes das camadas do pavimento. Esses dados serviram de entrada para o processo de aprendizagem, utilizando-se o simulador EasyNN 3.2, que se baseia em redes Multilayer Perceptron e no algoritmo de treinamento Backpropagation. Para o procedimento de retroanálise proposto foram implementadas seis RNAs: duas simulando o procedimento para pavimento de duas camadas (uma simulando o ensaio da viga Benkelman e a outra a do Falling Weight Deflectometer), duas para pavimento de três camadas (simulação com os mesmos aparelhos) e duas para pavimento de quatro camadas (simulando os ensaios descritos anteriormente). Mediante as regressões lineares entre os módulos reais (ELSYM5) e os previstos pela RNA, obtiveram-se coeficientes de determinação (R2) e erros médios relativos (EMR). Estes parâmetros demonstraram uma boa correlação linear entre os módulos reais (ELSYM5) e os previstos (RNA). Com os resultados obtidos, conclui-se que as RNAs são ferramentas potentes para serem utilizadas como procedimento de retroanálise para pavimentos flexíveis de duas, três e quatro camadas. / This paper investigates a backcalculation procedure using Artificial Neural Networks (ANNs). In the research 35,472 hypothetical deflection basins were used, created by the program ELSYM5. The ANNs training database consisted of these basins, and of the moduli and thickness used to generate them. The input layer of these ANNs was composed by thickness(es) of the pavement layer(s), the deflection basin (in the simulation with the Benkelman beam, beyond of those parameters, the curvature radius included (R)) and the output layer was composed by the resilient moduli of the layers of the pavement. Those data were used as output for the learning process, using the easyNN 3.2 simulator, which is based on Multilayer Perceptron and in the training algorithm Backpropagation. For the backcalculation procedure proposed six ANNs they were implemented: two simulating the procedure for pavement of two layers (a simulating the testing of the Benkelman beam and the other the one of Falling Weight Deflectometer), two for pavement of three layers (simulation with the same equipments) and two for pavement of for layers (simulating the testing described previously). The values founds throught linear regression between the real moduli (ELSYM5) and the predicted of ones for ANN, were obtained determination coefficients (R2) and relative average errors (EMR). These parameters demonstrated a good linear correlation between the real moduli (ELSYM5) and the predicted of ones (ANN). The conclusion .is that ANNs are potent tools for they be used in backcalculation procedures flexible pavements of two, three and four layers.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-01022018-122501 |
Date | 26 April 2000 |
Creators | Benedito Coutinho Neto |
Contributors | Glauco Tulio Pessa Fabbri, Antônio Nélson Rodrigues da Silva, Carlos Yukio Suzuki |
Publisher | Universidade de São Paulo, Engenharia de Transportes, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds