L'objet principal de cette thèse est d'étudier divers aspects de l'évolution d'un champ scalaire ou vectoriel, transporté par un champ de vitesse dont la statistique est donnée indépendamment du champ advecté. Ce faisant, on est amené également à étudier les courbes intégrales du champ de vitesse, appelées trajectoires Lagrangiennes. Après une introduction synthétique, plusieurs modèles et problèmes sont abordés. Notre modèle principal - baptisé après R. H. Kraichnan - suppose des champs de vitesse gaussiens delta-corrélés en temps. Sont étudiés les cas où la structure spatiale du champ de vitesse est soit lisse soit brownien fractionnaire (multidimensionnel). Un modèle où le champ de vitesse est corrélé en temps est également abordé. Parmi les problèmes étudiés sont les secteurs anisotropes de la quantité advectée, l'apparition d'intermittence spatiale, ou encore différents passages à la limite dans la statistique du champ de vitesse.
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00000712 |
Date | 22 January 2004 |
Creators | Horvai, Peter |
Publisher | Ecole Polytechnique X |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds