Return to search

Flowers in three dimensions and beyond

Pattern formation in buckled membranes was studied along with the morphology of flowers formed at the tip of silicon nanowires and ripples formed in suspended graphene sheets. Nash's perturbation method was tested for a simple case where initial and final metrics embed smoothly and there is a smooth path from one surface to another and was found to work successfully. The method was tested in more realistic conditions where a smooth path was not known and the method failed. Cylindrical flower-like membranes with a metric of negative Gaussian curvature were simulated in three and four dimensions. These four dimensional flowers had 2 orders of magnitude less energy than their three dimensional counterparts. Simulations were used to show that the addition of a fourth spatial dimension did not relieve all bending energy from the cylindrical membranes. Patterns formed at the tip of silicon nanowires were studied and found to be of the Dense Branching Morphology type. The rate of branching is dependent on the curvature of the gold bubble on which they are grown. Graphene was simulated using the modified embedded atom method potential and buckles were found to form if the carbon bonds were stretched. An energy functional was found for the energy of a sheet with a metric different from that of flat space. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/29682
Date04 May 2015
CreatorsThompson, Rebecca Caroline
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0016 seconds