Dans le but d’améliorer le rendement des propulseurs aérospatiaux, on s’intéresse à l’utilisation de ladétonation dans le cycle moteur. Cette thèse porte sur le développement et l’utilisation d’un codepour la compréhension du fonctionnement d’un moteur à détonation continue (CDWE). Le 1erchapitre place le cadre de l’étude, et positionne le CDWE par rapport à différents concepts demoteurs à détonation. Un état des lieux des simulations numériques concernant le fonctionnementd’un CDWE est établi afin de justifier l’approche numérique à utiliser. Cette approche numérique estdétaillée dans le 2e chapitre. Les équations d’Euler, les modèles thermochimiques, ainsi que lesschémas cinétiques utilisés dans cette étude y sont présentés. Le 3e chapitre décrit les méthodesnumériques implémentées dans le code. Le schéma WENO d’ordre 5 est utilisé pour l’évaluation desflux numériques. L’avancement temporel est assuré par le schéma semi-implicite d’ordre 2 ASIRK2Cou explicite d’ordre 3 RK3. Le 4e chapitre est consacré à la technique de raffinement adaptatif demaillage (AMR) et à la bibliothèque choisie. Le code est testé dans le 5e chapitre sur différents cas etappliqué à la simulation d’une onde de détonation afin de préparer les simulations présentées dans ledernier chapitre. Le 6e chapitre présente les résultats des simulations d’un CDWE. La structure 2Dd’une onde de détonation continue est présentée et comparée avec la structure 3D. L’influence durayon de courbure du canal et l’effet d’une injection par une fente sur la structure de l’écoulementsont étudiés. / In order to improve the performance of aerospace propulsion systems, it is interesting to use detonation in the engine cycle. This thesis focuses on the development and use of a code for understanding the operation of a continuous detonation wave engine (CDWE). The first chapter establishes the framework of the study and compares the CDWE with different concepts of detonation engines. An overview of numerical simulations concerning the operation of a CDWE is made to justify the numerical approach to use. This numerical approach is detailed in the second chapter. The Euler equations, thermochemical models and kinetic mechanisms used in this study are presented. The third chapter describes the numerical methods implemented in the code. The 5th order WENO scheme is used for the evaluation of numerical fluxes. The time-stepping is provided by the 2nd order semi-implicit ASIRK2C scheme or the 3rd order explicit RK3 scheme. The fourth chapter describes the technique of adaptive mesh refinement (AMR) and the selected library. The code is tested in the fifth chapter on different cases and applied to the simulation of a detonation wave in order to prepare the simulations presented in the last chapter. The sixth chapter presents the results of simulations of a CDWE. The 2D structure of a continuous detonation wave is presented and compared with the 3D structure. The influence of the radius of the curvature of the duct and the effect of a slot injection on the structure of the flowfield are discussed.
Identifer | oai:union.ndltd.org:theses.fr/2011ORLE2064 |
Date | 20 December 2011 |
Creators | Eude, Yohann |
Contributors | Orléans, Izrar, Boujema |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds