Cette thèse porte sur la compréhension et le contrôle des interactions dynamiques entre les mécanismes physiques et biologiques en considérant un procédé alternatif de séparation membranaire pour les bioprocédés industriels. L’objectif premier est un apport de connaissances scientifiques liées à la maîtrise de la bioréaction en considérant l'hydrodynamique complexe et les verrous rétention-perméation. Une technologie de filtration dynamique, appelée Rotating and Vibrating Filtration (RVF), a été spécifiquement étudiée. Elle se compose de cellules de filtration en série comprenant deux membranes circulaires planes fixées sur des supports poreux au voisinage d'un agitateur à trois pales planes attachées à un arbre central. Ce dispositif mécanique simple fonctionne en continu et génère une contrainte de cisaillement élevée ainsi qu'une perturbation hydrodynamique dans un entrefer étroit (pale-membrane). Les verrous scientifiques et techniques qui motivent ce travail, sont la caractérisation et la quantification (i) des champs de vitesse locaux et instantanés, (2) des contraintes pariétales de cisaillement à la surface de la membrane et (3) l'impact mécanique sur les cellules microbiennes.Dans ce but, des expériences et des simulations numériques ont été réalisées pour étudier l'hydrodynamique à des échelles globales et locales, en régimes laminaire et turbulent avec des fluides newtoniens dans des environnements biotique et abiotique. Pour l'approche globale, la distribution des temps de séjour (RTD) et le bilan thermique ont été réalisés et comparés aux précédentes études globales (courbes de consommation de puissance et de frottement). Une étude analytique des fonctions de distribution a été effectuée et les moments statistiques ont été calculés et discutés. Une analyse systémique a été utilisée pour décrire les comportements hydrodynamiques du module RVF. En combinant la simulation des écoulements (CFD) et les observations (RTD), les conditions et les zones de dysfonctionnement des cellules de filtration sont éclairées. Pour l'approche locale, la vélocimétrie laser (PIV) a été réalisée dans les plans horizontaux et verticaux et comparée à la simulation numérique (CFD). Une étude préliminaire basée sur une synchronisation entre la prise d’image et la position de l’agitateur (résolution angulaire) a permis d’accéder aux champs de vitesse moyens. Une campagne de mesure PIV a été réalisée sans synchronisation afin d’appliquer une décomposition orthogonale aux valeurs propres (POD) pour 'identifier les composantes moyennes, organisées et turbulentes des champs de vitesse (énergie cinétique). Pour l'application aux bioprocédés, un travail exploratoire a caractérisé l'effet de la filtration dynamique sur des cellules procaryotes (E. coli) en quantifiant l'intégrité cellulaire ou leur dégradation en fonction du temps et de la vitesse de rotation. / This thesis focuses on the understanding and the control of dynamic interactions between physical and biological mechanisms considering an alternative membrane separation into industrial bioprocess. It aims to carry scientific knowledge related to the control of bioreaction considering complex hydrodynamics and retention-permeation locks specific to membrane separation. A dynamic filtration technology, called Rotating and Vibrating Filtration (RVF), was investigated. It consists of filtration cells in series including two flat disc membranes fixed onto porous substrates in the vicinity of a three-blade impeller attached to a central shaft. This simple mechanical device runs continuously and generates a high shear stress as well as a hydrodynamic perturbation in the narrow membrane-blade gap. Several scientific and technical locks motivating this work are to characterize and to quantify (i) the velocity fields locally and instantaneously, (2) the shear stresses at membrane surface and (3) the mechanical impact on microbial cells.To this end, experiments and numerical simulations have been performed to investigate the hydrodynamics at global and local scales under laminar and turbulent regimes with Newtonian fluids under biotic and abiotic environment. For global approach, investigation of Residence Time Distribution (RTD) and thermal balance was carried out and compared to the previous global study (power consumption and friction curves). Analytical study of distribution functions was conducted and statistical moments were calculated and discussed. A systemic analysis was used to describe the hydrodynamic behaviors of the RVF module. Combining Computational Fluid Dynamics (CFD) and RTD observations, it leads to demonstrate dysfunctioning conditions and area. For the local approach, Particle Image Velocimetry (PIV) was be carried out in both horizontal and vertical planes and compared to CFD simulation. PIV preliminary study was conducted with a trigger strategy to access through angle-resolved measurements to an averaged velocity field. PIV further study were performed with a non-trigger strategy and applied to Proper Orthogonal Decomposition (POD) analysis in order to identify the coherent structure of the flow by decomposing the organized and turbulent fluctuations. For the bioprocess application, an exploratory work characterized the effect of Dynamic Filtration on prokaryote cell population (Escherichia coli) by quantifying cell integrity or damage as a function of time and rotation speed during filtration process in turbulent regime.
Identifer | oai:union.ndltd.org:theses.fr/2017ISAT0020 |
Date | 22 May 2017 |
Creators | Xie, Xiaomin |
Contributors | Toulouse, INSA, Fillaudeau, Luc, Dietrich, Nicolas, Schmitz, Philippe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds