Im Forschungsfeld der Proteindynamik häufen sich in den letzten Jahren Untersuchungen an einzelnen Molekülen. Damit können molekulare Ereignisse, die in konventioneller Spektroskopie durch stochastische Prozesse unentdeckt bleiben, durch direkte Beobachtung identifiziert und analysiert werden, was zu tieferem mechanistischem Verständnis des untersuchten Systems beitragen kann.
Die Implikation des molekularen Chaperons Hsp90 in die korrekte Faltung und Aktivierung einer Vielzahl davon abhängiger Klientenproteine machen es zu einem zentralen Knotenpunkt der zellulären Proteinhomöostase, allerdings ist der Mechanismus seiner breiten Klientenerkennung und -prozessierung bisher nur lückenhaft untersucht. Mit der Erkenntnis, dass Hsp90 ATP abhängig große, ratenlimitierende Umstrukturierungen erfährt, wurden Reportersysteme entwickelt, die auf dem Förster-Resonanzenergietransfer mit einer räumlichen Auflösung von ca. 2-10 nm basieren. Diese dokumentieren einen Klammerschluss des Chaperons und prognostizieren einen intermediatbbasierten Konformations-Zyklus. Details über den Mechanismus der Umstrukturierungen wurden mit der Entwicklung von Reportersystemen ermittelt, die auf dem photoinduzierten Elektronentransfer zwischen der Aminosäure Tryptophan und einem organischen Farbstoff basieren. Die Technik beruht auf kontaktinduzierter Fluoreszenzlöschung und damit verbundenen digitalen Intensitätsübergängen, dabei ermöglicht die räumliche Sensitivität von < 1 nm die Beobachtung von lokalen Umstrukturierungen. In Hsp90 wurden damit mittels konventioneller Spektroskopie drei kritische lokale Umlagerungen untersucht und daraus ein Modell mit heterogenen apo-Konformationen sowie ein kooperativer Konformationszyklus abgeleitet, der dem intermediatbasierten Modell gegenübersteht.
Im Rahmen dieser Dissertation wurde anhand des Hsp90-Chaperons eine Methode entwickelt, die eine bildgebende PET Fluoreszenzspektroskopie von mehreren Umstrukturierungen gleichzeitig an einzelnen Molekülen erlaubt. Ein umfangreiches Farbstoffscreening führte zur Identifizierung eines Farbstoffpaars, das die PET-basierte simultane Aufzeichnung zweier Konformations-Koordinaten ermöglicht. Über verschiedene Modifikationen des Chaperons konnten einzelmolekültaugliche Oberflächen hergestellt werden, auf denen zweifach markierte Hsp90-Proteine immobilisiert sind. Fluoreszenzintensitätszeitspuren einzelner Chaperone und entsprechende Kontrollkonstrukte bestätigen qualitativ den Erfolg der Methode, für die quantitative Analyse wurde eine Routine in der Programmiersprache Python entwickelt, mit welcher kinetische Informationen ermittelt werden konnten.
Diese legen eine enge wechselseitige Abhängigkeit der drei lokalen Elemente nahe, wobei der Großteil der Konformationsübergänge zweier simultan aufgezeichneter Umstrukturierungen Synchronität innerhalb von zwei Sekunden zeigt. Im Vergleich zur Hydrolyse von einem ATP in mehreren Minuten deutet das auf eine enge Kopplung hin. Weiter konnte eine Beschleunigung der Dynamiken durch aromatische Modifikation des N-Terminus von Hsp90 beobachtet werden, zudem erlaubt der Einzelmolekülansatz die Verwendung des nativen Nukleotids ATP, wodurch auch die lokalen Öffnungsdynamiken zugänglich werden. Die zur Bestimmung der Zeitkonstanten durchgeführte Analyse unterstützt die Ansicht heterogener apo-Zustände und einer einheitlich geschlossenen Konformation.
Die bildgebende Zweifarben-Einzelmolekül-PET-Spektroskopie konnte insgesamt zu einem Komplement der Einzelmolekül-FRET-Spektroskopie entwickelt werden, um damit lokale Konformationsdynamiken zu untersuchen. Der bildgebende Ansatz erlaubt eine einfache Implementierung in einen experimentellen Einzelmolekül-FRET Aufbau bei gleichzeitiger Erweiterung der beobachteten Koordinaten und wird so zu einem breit anwendbaren Werkzeug multidimensionaler Dynamikuntersuchungen einzelner Proteine. / Over the past years, the number of investigations of single molecules has risen in the field of protein dynamics studies. Direct observation of molecular events that are obscured by stochastic processes in bulk measurements can provide a deeper mechanistic understanding of the systems under study.
The molecular chaperone Hsp90, as being involved in the correct folding and activation of client proteins, thereby acting at late-stage folding, is a central node of cellular protein homeostasis. The mechanistic understanding of its broad client recognition and processing capability still remains elusive. The discovery of large conformational changes that drive the chaperone through a rate limiting conformational cycle as a reaction of ATP binding led to the development of reporter systems that probe the global rearrangement. As the reporters are based on Förster resonance energy transfer, they are active on a spatial scale of 2-10 nm and report on the molecular clamp closure. The predicted conformational cycle implicates several intermediate states. Details of the underlying rearrangements were obtained by the development of reporter systems based on photoinduced electron transfer between the amino acid tryptophan and an organic dye. As the technique relies on contact-induced quenching of fluorescence, which is accompanied by digital intensity transitions, the resulting spatial resolution of < 1 nm enables probing of local conformational rearrangements. In bulk experiments, three critical local dynamics were probed in Hsp90, leading to the assumption of heterogeneous apo conformations and an associated cooperative cycle which faces the intermediate-based model.
Within the scope of this doctoral thesis, two color single-molecule PET fluorescence imaging spectroscopy was developed using the Hsp90 chaperone to study multiple conformational rearrangements simultaneously on individual proteins. Extensive dye screening identified a dye pair suitable for the PET-based investigation of two different conformational coordinates simultaneously. Modifications on the chaperone protein enabled the immobilization of double-labeled Hsp90 molecules on glass surfaces that are suited for single-molecule studies. Fluorescence intensity time traces of single chaperones and related control constructs validated qualitatively the success of the method. For quantitative analysis, a routine was developed in the programming language Python to obtain kinetic information.
Derived kinetics pointed to a close interdependence between the three local elements. Furthermore, the majority of state transitions of rearrangements studied at the same time occurred simultaneously within a two-second window, thereby suggesting synchronicity. Compared to the hydrolysis of one ATP molecule taking minutes, this suggests a tight coupling of motions. Further, an aromatic modification of the Hsp90 N-Terminus resulted in accelerated local dynamics. Besides investigating the dynamics accompanying clamp closure, clamp opening kinetics also became accessible through the use of native nucleotide ATP. The analysis performed as part of the determination of time constants supports the view of a heterogeneous apo and a uniformly closed conformation.
Two-color single-molecule PET fluorescence imaging spectroscopy was developed into a technique complement to single-molecule FRET spectroscopy that enables the probing of local conformational dynamics in immobilized proteins. The imaging approach allows for easy implementation in a single-molecule FRET setup while expanding the observed coordinates, making the PET-based technique a widely applicable tool for multidimensional dynamics studies of single proteins.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:24493 |
Date | January 2021 |
Creators | Schubert, Jonathan |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-sa/4.0/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0031 seconds