Electroporation (EP) is a physical non-viral technique used to deliver therapeutic molecules across the cell membrane. During electroporation an external electric field is applied across a cell membrane and it causes pores to form. These pores then allow the surrounding media containing the therapeutics to diffuse across the membrane. This technique has been specifically studied as a promising gene and drug delivery system. Colloidal particles have also proven to be promising for a variety of biological applications including molecular delivery, imaging, and tumor ablation, due to their large surface area and tunable properties. In more recent years researchers have explored the use of both electroporation and particles simultaneously. In this research, the main objective was to investigate and determine the role of sub-micron particles in the electroporation process. Presented in this dissertation are results from the synthesis and characterization of colloidal particles of various sizes and different compositions. The use of these dielectric and metallic particles during in vitro electroporation were investigated along with various other electrical parameters associated with EP such as pulse length, number of pulses, and field strength. Computationally, aspects such as particle composition and particle concentration were explored in an attempt to predict experimental outcomes.
Identifer | oai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-7020 |
Date | 01 January 2015 |
Creators | Peterson, Alisha |
Publisher | Scholar Commons |
Source Sets | University of South Flordia |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Graduate Theses and Dissertations |
Rights | default |
Page generated in 0.003 seconds