Return to search

Genetic analysis of nitrogen assimilation in the Texas brown tide Aureoumbra lagunensis

The initiation, persistence, and termination of harmful algal blooms (HABs) can all be influenced by nutrient availability. Recent studies have highlighted the role of both organic and inorganic nitrogen sources in HAB dynamics. The pelagophyte Aureoumbra lagunensis causes ecosystem disruptive algal blooms and is responsible for the longest recorded harmful algal bloom (1989-1997). Because of Aureoumbra's small size and its inability to use nitrate, it has been hypothesized that its ability to use ammonium and organic nitrogen, especially at low concentrations, contributed to the unusual persistence of this bloom. This project aimed to assess the response of Aureoumbra to inorganic and organic nitrogen sources by examining the expression of genes responsible for nitrogen assimilation, with an eventual intent of developing expression assays that are indicative of nitrogen source use and/or sufficiency in Aureoumbra. Large volume batch cultures of Aureoumbra were grown with either ammonium or urea as a nitrogen source. Physiological characteristics (C:N, chlorophyll [alpha] cell⁻¹, and Fv/Fm) were monitored throughout the growth period, and the expression of the AMT-1, AMT-2 and UREC genes was assayed at early-, mid- and late-exponential phases. The results show that Aureoumbra can use both ammonium and urea, and that it is well adapted to low-nutrient environments. Only one gene, AMT-1, appeared to be transcriptionally regulated in response to changing nitrogen concentration, and only to ammonium. The results of this study contribute to our understanding of how algae in general cope with low nutrient availability and should ultimately help to define the dynamics of these HAB events. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2010-05-1131
Date26 October 2010
CreatorsAgostoni, Marco
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf

Page generated in 0.0019 seconds