Return to search

Road Users Classification Based on Bi-Frame Micro-Doppler with 24-GHz FMCW Radar

Radar sensors hold excellent capabilities to estimate distance and motion accu- rately, penetrate nonmetallic objects, and remain unaffected by weather conditions. These capabilities make these devices extremely flexible in their applications. Elec- tromagnetic waves centered at frequencies around 24 GHz offer high precision target measurements, compact antenna and circuitry design, and lower atmospheric absorp- tion than higher frequency-based systems. This thesis presents a case study for a 24 GHz frequency modulated continuous wave radar module. We start by addressing the theoretical background necessary for this work and describing the architecture of the module used. We present three classes’ classification accuracy, namely pedes- trians, cyclists, and cars. A set of features for the classification is designed based on theoretical models, and their effectiveness is validated through experiments. The features are extracted from the available geometrical and motion-related information and used to train different classification models to compare the results. Finally, a trade-off between feature number and accuracy is presented.

Identiferoai:union.ndltd.org:kaust.edu.sa/oai:repository.kaust.edu.sa:10754/668953
Date04 1900
CreatorsCoppola, Rudi
ContributorsAlouini, Mohamed-Slim, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Shihada, Basem, Al-Naffouri, Tareq Y., Ahmed, Sajid
Source SetsKing Abdullah University of Science and Technology
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0017 seconds