Integrin recycling has been generally assumed to be important for cell migration but the trafficking pathways and the molecules regulating integrin trafficking remain poorly characterized. Furthermore, little is known about the activation status of endocytosed integrins and how it affects the recycling of these receptors. It is likely that FA-engaged integrins will follow different trafficking pathways than bulk integrins and here I sought to study the endocytic fate of this particular integrin pool using the MT-induced FA disassembly assay. I found that integrins previously resident at FAs travel through different Rab compartments after FA disassembly and that their return to the plasma membrane is Rab11- and Src-dependent. Strikingly, I unveiled new functions for FAK and Src family kinases in this process by showing that these kinases are critical to keep integrins active during endocytic trafficking. This finding is unprecedented since it was not known whether endocytosed integrins were kept active during their trafficking. Interestingly, reassembly of FAs from endocytosed integrin occurred preferentially at the leading edge of migrating cells suggesting that integrins are trafficked in a polarized fashion. Furthermore, the recycling of integrins from the Rab11-positive compartment to the plasma membrane is a long-range transport implying the existence of a MT motor committed to this task. Consistently, I identified that a kinesin-II motor, Kif3AC, is engaged in this process. My work establishes a FAK- and Src family kinases-based mechanism for integrin "adhesion memory" during endocytic trafficking and identifies a direct link between FA disassembly and reassembly through an endocytic recycling pathway involving Rab5 and Rab11 and a kinesin-II family member.
Identifer | oai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D8TH8KG0 |
Date | January 2015 |
Creators | Nader, Guilherme Pedreira de F. |
Source Sets | Columbia University |
Language | English |
Detected Language | English |
Type | Theses |
Page generated in 0.0096 seconds