Return to search

Geometria de teias / Web geometry

A geometria de teias dedica-se ao estudo de invariantes locais para uma determinada configuração de folheações. Uma d-teia é uma coleção de folheações que estão em posição geral. Desta forma, uma d-teia plana, definida em \'R POT.2\' ou \'C POT.2\', nada mais é que uma família de d folheações por curvas. Apresentamos neste trabalho os principais conceitos da teoria clássica de teias, iniciada por W. Blaschke por volta de 1930, bem como uma abordagem atual utilizada no estudo de teias planas. São abordados dois tipos de problemas importantes na teoria: os problemas de linearização e de algebrização de teias. Provamos um resultado clássico no que concerne ao problema de linearização, e um resultado de algebrização de teias empregando métodos desenvolvidos mais recentemente / Web geometry is devoted to the study of local invariants of a certain configuration of foliations. A d-web is a collection of foliations in general position. Therefore, a d-web defined in \'R POT. 2\' or \'C POT. 2\' is just a family of d foliations by curves. We present in this work the main concepts of classical theory of webs, initiated by W. Blaschke around 1930, as well as newer methods used in the study of plane webs. We approach two important types of problems in the theory: problems of linearization and that of algebrization of webs. We prove a classical result concerning the linearization problem, and a result of algebrization of webs using recently developed methods

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-01092009-090119
Date28 May 2009
CreatorsCosta, Rodrigo Lopes
ContributorsRuas, Maria Aparecida Soares
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0017 seconds