Un nanopore artificiel est une ouverture de taille nanométrique faite dans un film mince synthétique (polymère ou inorganique). Un nanopore unique peut être considéré comme l’élément simple constitutif d’une membrane. Les récentes avancées dans ce domaine ont ouvert des opportunités pour développer des outils pour la détection de molécules cibles à faible concentration (fmol L-1), en temps réel. Les nanopores artificiels s’inspirent des canaux biologiques situés dans la membrane cellulaire. Ces derniers permettent le transport d’ions ou de molécules entre les milieux intra- et extra-cellulaires, grâce à leurs fortes sélectivités ou leurs propriétés d’ouverture/fermeture. Comparé à leurs homologues biologiques, les limitations des nanopores solides sont leurs manques de sélectivité et de réponse aux stimuli extérieurs. Toutefois, les nanopores solides ont l’avantage d’être beaucoup plus résistant, robuste et facile à manipuler que les pores biologiques. Ainsi la fonctionnalisation de leur surface, avec des systèmes plus ou moins complexes, permettrait d’améliorer à la fois leurs propriétés de transport sélectif, leurs capacités de détection de biomolécules ou encore d’étudier plus précisément les mécanismes fondamentaux du transport des macromolécules en milieu confiné.Dans cette thèse, nous avons conçu dans un premier temps des nanopores bi-fonctionnels, répondant au pH, et à l’attache d’un ligand. Pour fabriquer ces nanopores bi-fonctionnels, nous avons utilisé un système biotine-avidine fixé dans des nanopores polymères. Nous avons démontré qu’il est possible de moduler l’ouverture et la fermeture du nanopore avec le pH de façon réversible. De plus, il est possible de détecter des protéines biotinylées et des anticorps par l’analyse des rectifications de courant. Le principal défaut de cette stratégie est son irréversibilité. En utilisant une stratégie similaire combinée avec des polyélectrolytes, nous avons obtenu des fonctionnalisations réversibles. Ils permettent de moduler la sélectivité ionique du pore et les propriétés de conduction en fonction du pH et de ligand. Dans un second temps, nous nous sommes intéressés aux questions fondamentales de la translocation de polynucléotide, plus précisément de l’analyse de l’influence de l’état de surface du nanopore (hydrophobicité, charge), dans les conditions où la distance de Debye devient équivalente au diamètre du nanopore. Nous avons démontré que si le nanopore présente la même charge que la PolyAdénosine et la PolyCytosine, la vitesse de passage de la molécule augmente et la barrière globale d’énergie d’entrée du nanopore diminue par rapport au nanopore non-chargé hydrophobe. Ensuite, en modifiant la surface d’un nanopore en PET, nous avons montré qu’il est possible de détecter des brins simples et doubles d’ADN très courts (10 à 40 bases). Enfin, nous avons tenté une fonctionnalisation de nanopores pour éviter l’adsorption non spécifique des protéines afin d’étudier la translocation de longs fibrilles d’amyloïdes de lysozyme. Cet objectif n’a pas été complètement atteint compte tenu des résultats qui ne permettent pas d’affirmer quand au passage des molécules à travers le pore.Dans cette thèse nous nous sommes attachés à montrer l’intérêt et la nécessité de fonctionnaliser les pores, aussi bien pour obtenir des nanopores biomimétiques stimuli-répondants (pH et ligand) ou anti-bioadhérants que pour des études fondamentales de transport. Il est également facile de transposer cette technique à des membranes multipores. Il est donc possible de concevoir des membranes optimisées pour des applications de séparation ionique, de capture de molécules cibles ou plus généralement de filtration. / Artificial nanopores are nanometer sized aperture made in synthetic thin films (polymer or inorganic). A single nanopore can be considered as a constitutive element from membranes. Recent advances in this field are bringing new tools for real time detection of target molecules at low concentration (fmol L-1). Biological channels inside the cell membrane are used as models to design solid-state nanopores. They allow ions or molecules transport through intra- and extra-cellular side, thanks to their high selectivity and their gating properties. Compared to their biological counterparts, limitations of the synthetic nanopores are their lack of selectivity and unresponsiveness towards external stimuli. However, the solid state presents several advantages compared to the biological ones, such as nanopores robustness, the control of the number of pores and a long lifetime (several days or weeks). Thus their surface functionalization would increase their selective transport properties, their abilities to detect biomolecules or to study more in details their fundamental mechanisms.In this thesis, we design first bi-functional nanopores, pH- and ligand-gated. To do it, we used biotin-avidin system grafted inside a polymeric nanopore. We demonstrated that it is possible to reversibly gate the nanopore with pH modulation. Moreover, we are able to detect protein labeled with biotin and antibodies by analyzing the current rectification. The major drawback comes from the irreversibility of its covalent bonds. By using a similar concept combined with polyelectrolytes, we obtain a reversible functionalization. Depending on the ligand, the ionic selectivity and the conduction properties can be modulated. Next, we focused on fundamental questions regarding polynucleotides translocation, and more precisely on the influence of the surface state of the nanopore (hydrophobicity, charge) when the Debye distance is similar to the pore diameter. We show that if the nanopore has the same charge as the polyAdenosine or polyCytosine, the translocation time decreases, and the energy barrier of entrance decreases compared to an uncharged hydrophobic nanopore. Then, by modifying the surface of the nanopore made in PET film, we are able to detect short single and double strand of DNA (10 to 40 bases). Finally, we tried to functionalize PET nanopores to avoid unspecific adsorption of proteins and to study the translocation of long fibrils of amyloids from lysozyme. This goal has not been entirely reach since we cannot claim that the fibrils translocate through the pore.In this thesis we show the interest and the need to functionalize the nanopores, to obtain biomimetic stimuli-responsive (pH and ligand), to avoid unspecific adsorption or to study transport properties with the nanopore. It is easy to upscale those techniques to multipores membranes. Thus it is possible to design membranes to enhance their ionic separation, target molecule detection or more generally filtration applications.
Identifer | oai:union.ndltd.org:theses.fr/2016MONTT226 |
Date | 25 November 2016 |
Creators | Lepoitevin, Mathilde P. |
Contributors | Montpellier, Balme, Sébastien |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds