This thesis studies how structure and energetics influence complex food web dynamics. In Chapter 1, I approach the question by studying a simple food web model that can be modified to include different structural and energetic features. In Chapter 2, I study stability and food web properties in assembled webs that are structured by body-size restrictions and a generalist-specialist tradeoff. The results of both chapters suggest that structure and energetics must be considered to understand food web dynamics. In Chapter 1, I find that food web structure can be modified by weak and strong energetic flows and stabilize dynamics through asynchrony. In Chapter 2, I find that food web assembly with different assemblages of generalists or specialists leads to structures that have corresponding differences in the stability and properties of food webs. Hence, my thesis reexamines the relationship of complexity and dynamics from a topological and energetic framework.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.80884 |
Date | January 2003 |
Creators | Teng, Jack, 1979- |
Contributors | McCann, K. S. (advisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Science (Department of Biology.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 002086229, proquestno: AAIMQ98749, Theses scanned by UMI/ProQuest. |
Page generated in 0.0019 seconds