The utility of focal-plane-array Fourier transform infrared (FPA-FTIR) spectroscopy as a rapid method for the differentiation of antibiotic resistant foodborne pathogens was studied. / Optimum spectral acquisition and processing parameters as well as appropriate film thickness of bacterial films were empirically established for the discrimination between two Shigella species (S. flexneri and S sonnei) in order to optimize the scanning parameters of an FPA-FTIR spectrometer. A detailed study of the potential of FPA-FTIR spectroscopy for the discrimination between antibiotic resistant and sensitive strains from two Salmonella species (S. Typhimurium and S. Heidelberg) was subsequently undertaken. The results of these studies demonstrated that the infrared spectra recorded by an FPA-FTIR spectrometer contained sufficient information to differentiate between antibiotic resistant and sensitive strains of Salmonella. Accordingly, FPA-FTIR spectroscopy may potentially serve as a high-throughput technique for the identification of foodborne as well as antibiotic resistant bacteria. / Interpretation of the regions selected in relation to the different resistance mechanisms would require more detailed studies. However, the identification of specific biochemical markers based on such spectral interpretation is generally not feasible owing to the complexity of the FTIR spectra of microorganisms.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.101657 |
Date | January 2006 |
Creators | Taqi, Marwa. |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Science (Department of Food Science and Agricultural Chemistry.) |
Rights | © Marwa Taqi, 2006 |
Relation | alephsysno: 002592482, proquestno: AAIMR32794, Theses scanned by UMI/ProQuest. |
Page generated in 0.0019 seconds