Return to search

Méthodes d’apprentissage interactif pour la classification des messages courts / Interactive learning methods for short text classification

La classification automatique des messages courts est de plus en plus employée de nos jours dans diverses applications telles que l'analyse des sentiments ou la détection des « spams ». Par rapport aux textes traditionnels, les messages courts, comme les tweets et les SMS, posent de nouveaux défis à cause de leur courte taille, leur parcimonie et leur manque de contexte, ce qui rend leur classification plus difficile. Nous présentons dans cette thèse deux nouvelles approches visant à améliorer la classification de ce type de message. Notre première approche est nommée « forêts sémantiques ». Dans le but d'améliorer la qualité des messages, cette approche les enrichit à partir d'une source externe construite au préalable. Puis, pour apprendre un modèle de classification, contrairement à ce qui est traditionnellement utilisé, nous proposons un nouvel algorithme d'apprentissage qui tient compte de la sémantique dans le processus d'induction des forêts aléatoires. Notre deuxième contribution est nommée « IGLM » (Interactive Generic Learning Method). C'est une méthode interactive qui met récursivement à jour les forêts en tenant compte des nouvelles données arrivant au cours du temps, et de l'expertise de l'utilisateur qui corrige les erreurs de classification. L'ensemble de ce mécanisme est renforcé par l'utilisation d'une méthode d'abstraction permettant d'améliorer la qualité des messages. Les différentes expérimentations menées en utilisant ces deux méthodes ont permis de montrer leur efficacité. Enfin, la dernière partie de la thèse est consacrée à une étude complète et argumentée de ces deux prenant en compte des critères variés tels que l'accuracy, la rapidité, etc. / Automatic short text classification is more and more used nowadays in various applications like sentiment analysis or spam detection. Short texts like tweets or SMS are more challenging than traditional texts. Therefore, their classification is more difficult owing to their shortness, sparsity and lack of contextual information. We present two new approaches to improve short text classification. Our first approach is "Semantic Forest". The first step of this approach proposes a new enrichment method that uses an external source of enrichment built in advance. The idea is to transform a short text from few words to a larger text containing more information in order to improve its quality before building the classification model. Contrarily to the methods proposed in the literature, the second step of our approach does not use traditional learning algorithm but proposes a new one based on the semantic links among words in the Random Forest classifier. Our second contribution is "IGLM" (Interactive Generic Learning Method). It is a new interactive approach that recursively updates the classification model by considering the new data arriving over time and by leveraging the user intervention to correct misclassified data. An abstraction method is then combined with the update mechanism to improve short text quality. The experiments performed on these two methods show their efficiency and how they outperform traditional algorithms in short text classification. Finally, the last part of the thesis concerns a complete and argued comparative study of the two proposed methods taking into account various criteria such as accuracy, speed, etc.

Identiferoai:union.ndltd.org:theses.fr/2017AZUR4039
Date19 June 2017
CreatorsBouaziz, Ameni
ContributorsCôte d'Azur, Precioso, Frédéric
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds