La classification a été largement étudiée en apprentissage automatique. Les méthodes d’ensemble, qui construisent un modèle de classification en intégrant des composants d’apprentissage multiples, atteignent des performances plus élevées que celles d’un classifieur individuel. La précision de classification d’un ensemble est directement influencée par la qualité des données d’apprentissage utilisées. Cependant, les données du monde réel sont souvent affectées par les problèmes de bruit d’étiquetage et de déséquilibre des données. La marge d'ensemble est un concept clé en apprentissage d'ensemble. Elle a été utilisée aussi bien pour l'analyse théorique que pour la conception d'algorithmes d'apprentissage automatique. De nombreuses études ont montré que la performance de généralisation d'un classifieur ensembliste est liée à la distribution des marges de ses exemples d'apprentissage. Ce travail se focalise sur l'exploitation du concept de marge pour améliorer la qualité de l'échantillon d'apprentissage et ainsi augmenter la précision de classification de classifieurs sensibles au bruit, et pour concevoir des ensembles de classifieurs efficaces capables de gérer des données déséquilibrées. Une nouvelle définition de la marge d'ensemble est proposée. C'est une version non supervisée d'une marge d'ensemble populaire. En effet, elle ne requière pas d'étiquettes de classe. Les données d'apprentissage mal étiquetées sont un défi majeur pour la construction d'un classifieur robuste que ce soit un ensemble ou pas. Pour gérer le problème d'étiquetage, une méthode d'identification et d'élimination du bruit d'étiquetage utilisant la marge d'ensemble est proposée. Elle est basée sur un algorithme existant d'ordonnancement d'instances erronées selon un critère de marge. Cette méthode peut atteindre un taux élevé de détection des données mal étiquetées tout en maintenant un taux de fausses détections aussi bas que possible. Elle s'appuie sur les valeurs de marge des données mal classifiées, considérant quatre différentes marges d'ensemble, incluant la nouvelle marge proposée. Elle est étendue à la gestion de la correction du bruit d'étiquetage qui est un problème plus complexe. Les instances de faible marge sont plus importantes que les instances de forte marge pour la construction d'un classifieur fiable. Un nouvel algorithme, basé sur une fonction d'évaluation de l'importance des données, qui s'appuie encore sur la marge d'ensemble, est proposé pour traiter le problème de déséquilibre des données. Cette méthode est évaluée, en utilisant encore une fois quatre différentes marges d'ensemble, vis à vis de sa capacité à traiter le problème de déséquilibre des données, en particulier dans un contexte multi-classes. En télédétection, les erreurs d'étiquetage sont inévitables car les données d'apprentissage sont typiquement issues de mesures de terrain. Le déséquilibre des données d'apprentissage est un autre problème fréquent en télédétection. Les deux méthodes d'ensemble proposées, intégrant la définition de marge la plus pertinente face à chacun de ces deux problèmes majeurs affectant les données d'apprentissage, sont appliquées à la cartographie d'occupation du sol. / Classification has been widely studied in machine learning. Ensemble methods, which build a classification model by integrating multiple component learners, achieve higher performances than a single classifier. The classification accuracy of an ensemble is directly influenced by the quality of the training data used. However, real-world data often suffers from class noise and class imbalance problems. Ensemble margin is a key concept in ensemble learning. It has been applied to both the theoretical analysis and the design of machine learning algorithms. Several studies have shown that the generalization performance of an ensemble classifier is related to the distribution of its margins on the training examples. This work focuses on exploiting the margin concept to improve the quality of the training set and therefore to increase the classification accuracy of noise sensitive classifiers, and to design effective ensemble classifiers that can handle imbalanced datasets. A novel ensemble margin definition is proposed. It is an unsupervised version of a popular ensemble margin. Indeed, it does not involve the class labels. Mislabeled training data is a challenge to face in order to build a robust classifier whether it is an ensemble or not. To handle the mislabeling problem, we propose an ensemble margin-based class noise identification and elimination method based on an existing margin-based class noise ordering. This method can achieve a high mislabeled instance detection rate while keeping the false detection rate as low as possible. It relies on the margin values of misclassified data, considering four different ensemble margins, including the novel proposed margin. This method is extended to tackle the class noise correction which is a more challenging issue. The instances with low margins are more important than safe samples, which have high margins, for building a reliable classifier. A novel bagging algorithm based on a data importance evaluation function relying again on the ensemble margin is proposed to deal with the class imbalance problem. In our algorithm, the emphasis is placed on the lowest margin samples. This method is evaluated using again four different ensemble margins in addressing the imbalance problem especially on multi-class imbalanced data. In remote sensing, where training data are typically ground-based, mislabeled training data is inevitable. Imbalanced training data is another problem frequently encountered in remote sensing. Both proposed ensemble methods involving the best margin definition for handling these two major training data issues are applied to the mapping of land covers.
Identifer | oai:union.ndltd.org:theses.fr/2017BOR30016 |
Date | 19 July 2017 |
Creators | Feng, Wei |
Contributors | Bordeaux 3, Boukir, Samia |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English, French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0032 seconds