Return to search

Lipid layers as ultra-thin dielectric for highly sensitive ions field effect transistor sensors

Cette thèse vise à développer un capteur d’ions cuivre dans des échantillons humains tels que le plasma ou les urines où l’accumulation des ions induit la maladie de Wilson. Le manque d’outil de diagnostic efficace et non invasif rend cette maladie traitable, potentiellement fatale. Notre capteur, basé sur la technologie des transistors à effet de champ de type metal-oxide-semiconducteur, a l’originalité d’utiliser une monocouche de lipide de type DC8,9PC de 2.4 nm d’épaisseur comme diélectrique de grille. Nous démontrons dans cette thèse que ces lipides peuvent être chimiquement modifiés en de monocouches, à stabilité mécanique et électrique élevée, transformées en sondes spécifiques par greffage sur le groupement de tête des lipides d’une fonction chélatante spécifique aux ions cuivre. La monocouche lipidique est formée à la surface du canal semiconducteur du transistor par fusion vésiculaire et est stabilisée par réticulation des lipides suivant un protocole que nous avons développé. Dans une première partie, nous décrivons la fabrication du transistor ainsi que l’ingénierie chimique des lipides avec le chélateur. Des mesures, en solutions aqueuses contenant des ions cuivre et d’autres ions potentiellement compétiteurs, ont validé la sensibilité et la spécificité du capteur. La deuxième partie est dédiée à l’optimisation des monocouches en tant qu’isolants électriques stables. Nous introduisons dans cette thèse la notion de double polymérisation des lipides dans la monocouche avec réticulation des chaînes aliphatiques et des groupements de tête. Nous démontrons que celle-ci conduit à l’amélioration drastique des propriétés mécaniques et électriques des monocouches. / This thesis aims at developing a sensor for the detection of Cu2+ in human samples such as urine. Copper is an ion of pathological interest in the body and its accumulation in tissues is responsible for the Wilson disease. While the disease can be effectively treated, the lack of efficient and non-invasive diagnosis techniques makes it potentially deadly. Our project aims for developing an efficient, sensitive, specific, and low cost sensor device based on metal-oxide-semiconductor field effect transistor technology and has the originality of using a 2.4 nm thick monolayer of DC8,9PC lipids as gate dielectric. We demonstrate that such lipids can be chemically engineered to allow the fabrication of monolayers with high mechanical and electrical stability and to confer them specific probe function. Specificity of the sensor is given by the grafting of a copper specific chelator to the lipids head-groups. The lipid monolayer is formed on the transistor semiconducting channel by the vesicle fusion. In the first part of the thesis, we describe the fabrication of the transistor including the chemical engineering of the lipids with the chelator. Sensitivity and specificity measurements were realized in aqueous solutions containing copper ions and potentially competitive ions. The second part is dedicated to improving the performances of the lipid monolayer as a stable insulator. We introduce in this thesis the concept of double polymerization of the lipids in the monolayer with a reticulation at both the levels of their aliphatic chains and their head-groups. We demonstrate that that leads to drastic improvements of both the mechanical and electrical properties of the monolayer.

Identiferoai:union.ndltd.org:theses.fr/2016AIXM4002
Date05 February 2016
CreatorsKenaan, Ahmad
ContributorsAix-Marseille, Charrier, Anne, Raimundo, Jean-Manuel
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0133 seconds