Return to search

Morphostructural evolution of active margin basins: the example of the Hawke Bay forearc basin, New Zealand.

Topography growth and sediment fluxes in active subduction margin settings are poorly understood. Geological record is often scarce or hardly accessible as a result of intensive deformation. The Hawke Bay forearc basin of the Hikurangi margin in New Zealand is well suited for studying morphstructural evolution. It is well preserved, partly emerged and affected by active tectonic deformation during Pleistocene stage for which we have well dated series and well-known climate and eustasy. The multidisciplinary approach, integrating offshore and onshore seismic interpretations, well and core data, geological mapping and sedimentological sections, results in the establishment of a detailed stratigraphic scheme for the last 1.1 Ma forearc basin fill. The stratigraphy shows a complex stack of 11 eustasy-driven depositional sequences of 20, 40 and 100 ka periodicity. These sequences are preserved in sub-basins that are bounded by active thrust structures. Each sequence is characterized by important changes of the paleoenvironment that evolves between the two extremes of the glacial maximum and the interglacial optimum. Thus, the Hawke Bay forearc domain shows segmentation in sub-basins separated by tectonic ridges during sea level lows that become submerged during sea level highs. Over 100 ka timescale, deformation along active structures together with isostasy are responsible of a progressive migration of sequence depocenters towards the arc within the sub-basins. Calculation of sediment volumes preserved for each of the 11 sequences allows the estimation of the sediment fluxes that transit throughout the forearc domain during the last 1.1 Ma. Fluxes vary from c. 3 to c. 6 Mt.a⁻¹. These long-term variations with 100 ka to 1 Ma timescale ranges are attributed to changes in the forearc domain tectonic configuration (strain rates and active structure distribution). They reflect the ability of sub-basin to retain sediments. Short-term variations of fluxes (<100 ka) observed within the last 150 ka are correlated to drastic Pleistocene climate changes that modified erosion rates in the drainage area. This implies a high sensitiveness and reactivity of the upstream area to environmental changes in terms of erosion and sediment transport. Such behaviour of the drainage basin is also illustrated by the important increase of sediment fluxes since the European settlement during the 18th century and the following deforestation.

Identiferoai:union.ndltd.org:canterbury.ac.nz/oai:ir.canterbury.ac.nz:10092/1474
Date January 2007
CreatorsPaquet, Fabien
PublisherUniversity of Canterbury. Geological Sciences
Source SetsUniversity of Canterbury
Languageen fr
Detected LanguageEnglish
TypeElectronic thesis or dissertation, Text
RightsCopyright Fabien Paquet, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml
RelationNZCU

Page generated in 0.0018 seconds