CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Nesta dissertaÃÃo fazemos um estudo de geometria das superfÃcies isometricamente imersas numa forma espacial tridimensional impondo algumas condiÃÃes sobre as curvaturas mÃdia e gaussiana. Se a curvatura à nÃo positiva prova-se que a superfÃcie à uma esfera, um produto de cÃrculos ou um
cilindro. TambÃm à provado que se uma superfÃcie localmente H-deformÃvel à um toro, entÃo sua curvatura mÃdia à constante. / In this dissertation we study the geometry of surfaces isometrically immersed in a 3-dimensional space form imposing some conditions on its mean and gaussian curvature. If the gaussian curvature is non-positive we prove that the surface is a sphere, a product of circles or a cylinder. It is also proved that if a surface locally H-deformable is a torus; then it mean curvature is constant.
Identifer | oai:union.ndltd.org:IBICT/oai:www.teses.ufc.br:2634 |
Date | 15 July 2008 |
Creators | Edno dos Santos Sousa |
Contributors | Antonio Gervasio Colares, Oscar Alfredo Palmas Velasco, AbdÃnago Alves de Barros |
Publisher | Universidade Federal do CearÃ, Programa de PÃs-GraduaÃÃo em MatemÃtica, UFC, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFC, instname:Universidade Federal do Ceará, instacron:UFC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds