In this dissertation the linearized dynamics and stability of a two-craft Coulomb tether formation are investigated. With a Coulomb tether the relative distance between two satellites is controlled using electrostatic Coulomb forces. A charge feedback law is introduced to stabilize the relative distance between the satellites to a constant value. Compared to previous Coulomb thrusting research, this is the first feedback control law that stabilizes a particular formation shape. The two craft are connected by an electrostatic virtual tether that essentially acts as a long, slender near-rigid body. Inter-spacecraft Coulomb forces cannot influence the inertial angular momentum of this formation. However, the differential gravitational attraction can be exploited to stabilize the attitude of this Coulomb tether formation about an orbit nadir direction. Stabilizing the separation distance will also stabilize the in-plane rotation angle, while the out-of-plane rotational motion remains unaffected. The other two relative equilibriums of the charged 2-craft problem are along the orbit-normal and the along-track direction. Unlike the charged 2-craft formation scenario aligned along the orbit radial direction, a feedback control law using inter-spacecraft electrostatic Coulomb forces and the differential gravitational accelerations is not sufficient to stabilize the Coulomb tether length and the formation attitude. Therefore, hybrid feedback control laws are presented which combine conventional thrusters and Coulomb forces. The Coulomb force feedback requires measurements of separation distance error and error rate, while the thruster feedback is in terms of Euler angles and their rates. This hybrid feedback control is designed to asymptotically stabilize the satellite formation shape and attitude while avoiding plume impingement issues.
The relative distance between the two satellites can be increased or decreased using electrostatic Coulomb forces. The linear dynamics and stability analysis of such reconfiguration are studied for all the three equilibrium. The Coulomb tether expansion and contraction rates affect the stability of the structure and limits on these rates are discussed using the linearized time-varying dynamical models. These limits allow the reference length time histories to be designed while ensuring linear stability of the virtual structure. Throughout this dissertation the Coulomb tether is modeled as a massless, elastic component and, a point charge model is used to describe the charged craft. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/27475 |
Date | 04 May 2007 |
Creators | Natarjan, Arun |
Contributors | Aerospace and Ocean Engineering, Schaub, Hanspeter, Hendricks, Scott L., Woolsey, Craig A., Hall, Christopher D. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | Dissertation_Arun_Natarajan_New.pdf |
Page generated in 0.0015 seconds