La gestion et le contrôle des variations géométriques des produits pendant les processus de développement représentent une préoccupation importante pour la réduction des coûts, l’amélioration de la qualité et la compétitivité des entreprises dans un contexte de mondialisation. Pendant la phase de conception, les exigences fonctionnelles et les tolérances géométriques sont issues de l'intention de conception. La modélisation des formes et le dimensionnement des produits sont aujourd'hui largement supportés par des outils de modélisation géométrique. Toutefois, les variations géométriques ne peuvent pas être évaluées en utilisant intuitivement les outils de modélisation existants. En outre, les étapes de fabrication et de mesure sont les deux principaux générateurs de variations géométriques desquels découlent les deux axiomes bien connus de l'imprécision de la fabrication et de l'incertitude de la mesure. Une vision globale des spécifications géométriques des produits (GPS) devrait considérer non seulement le processus complet de tolérancement, la modélisation des tolérances, et la représentation des tolérances mais aussi les représentations des formes géométriques et les techniques de traitement appropriées ainsi que les algorithmes associés. GeoSpelling, solution considérée comme fondement des normes ISO GPS, offre un langage non ambigu et un cadre complet pour la modélisation et la description des variations géométriques sur le cycle de vie des produits. GeoSpelling s’appuie sur un ensemble de concepts forts dont celui du "Skin Model". Cependant, l’«opérationnalisation» de GeoSpelling n'a pas été réalisée et peu de recherches ont porté sur la génération du Skin Model. Le Skin Model, vu comme un modèle de forme discrète est l'objectif principal de cette thèse. Dans ce travail, les fondamentaux de la géométrie discrète sont appliqués à GeoSpelling, les techniques de simulation de Monte Carlo et les méthodes statistiques d'analyse de formes sont développées pour simuler et analyser les "formes réalistes" prenant en compte, les contraintes géométriques dérivées de spécifications fonctionnelles et de considérations de fabrication. En plus de cartographier les concepts fondamentaux et les opérations de GeoSpelling avec la géométrie discrète, ce travail propose un modèle de forme discrète intégrant les erreurs aléatoires et systématiques approchées du second ordre. Le concept d'un Skin Model moyen et ses statistiques robustes sont également développés. Une étude de cas plus complète, basée sur un embouti de tôle en forme de croix pour lequel le processus de fabrication est simulé avec des variations stochastiques, permet d’illustrer les résultats des simulations du skin model. Les performances de la méthode sont ensuite évaluées. / The management and the control of product geometrical variations during the whole development process is an important issue for cost reduction, quality improvement and company competitiveness in the global manufacturing era. During the design phase, geometric functional requirements and tolerances are derived from the design intent. Geometric modeling tools, now largely support the modeling of product shapes and dimensions. However, permissible geometrical variations cannot be intuitively assessed using existing modeling tools. In addition, the manufacturing and measurement stages are two main geometrical variations generators according to the two well know axioms of manufacturing imprecision and measurement uncertainty. A comprehensive view of Geometrical Product Specifications should consider not only the complete tolerancing process, tolerance modeling and tolerance representation but also shape geometric representations, and suitable processing techniques and algorithms. GeoSpelling as the basis of the GPS standard enables a comprehensive modeling framework and an unambiguous language to describe geometrical variations covering the overall product life cycle thanks to a set of concepts and operations based on the fundamental concept of the “Skin Model”. However, the “operationalization” of GeoSpelling has not been successfully completed and few research studies have focused on the skin model simulation. The skin model as a discrete shape model is the main focus of this dissertation. We investigate here discrete geometry fundamentals of GeoSpelling, Monte Carlo Simulation Techniques and Statistical Shape Analysis methods to simulate and analyze “realistic shapes” when considering geometrical constraints requirements (derived from functional specifications and manufacturing considerations). In addition to mapping fundamental concepts and operations to discrete geometry one’s, the work presented here investigates a discrete shape model for both random and systematic errors when taking into account second order approximation of shapes. The concept of a mean skin model and its robust statistics are also developed. The results of the skin model simulations and visualizations are reported. By means of a case study based on a cross-shaped sheet metal part where the manufacturing process is simulated using Finite Element Analysis considering stochastic variations, the results of the skin model simulations are shown, and the performances of the method are described.
Identifer | oai:union.ndltd.org:theses.fr/2011DENS0040 |
Date | 17 October 2011 |
Creators | Zhang, Min |
Contributors | Cachan, Ecole normale supérieure, Mathieu, Luc |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds