Return to search

Contribution à la formulation symétrique du couplage équations intégrales - éléments finis : application à la géotechnique

Un des outils numériques les plus utilisés en ingénierie est la méthode des éléments finis, qui peut être mise en o euvre grâce à l'utilisation de nombreux codes de calcul. Toutefois, une difficulté apparaît lors de l'utilisation de la méthode des éléments finis, spécialement en géotechnique, lorsque la structure étudiée est en interaction avec un domaine de dimensions infinies. L'usage courant en ingénierie est alors de réaliser les calculs sur des domaines bornés, mais la définition de la frontière de tels domaines bornés pose de sérieux problèmes. Pour traiter convenablement les problèmes comportant des frontières à l'infini, l'utilisation d'éléments discrets "infinis" est maintenant souvent délaissée au profit de la méthode des équations intégrales ou "méthode des éléments de frontière" qui permet de résoudre un système d'équations aux dérivées partielles linéaire dans un domaine infini en ne maillant que la frontière du domaine à distance finie. La mise en oeuvre du couplage entre la méthode des éléments finis et la méthode des éléments de frontière apparaît donc comme particulièrement intéressante car elle permet de bénéficier de la flexibilité des codes de calcul par éléments finis tout en permettant de représenter les domaines infinis à l'aide de la méthode des éléments de frontière. La méthode est basée sur la construction de la "matrice de raideur" du domaine infini grâce à l'utilisation de la méthode des équations intégrales. Il suffit alors d'assembler la matrice de raideur du domaine infini avec la matrice de raideur du domaine fini représenté par éléments finis. L'utilisation de la méthode la plus simple de traitement des équations intégrales, dite méthode de " collocation " conduit à une matrice de raideur non-symétrique. Par ailleurs, la méthode dite "Singular Galerkin" conduit à une formulation symétrique, mais au prix du calcul d'intégrales hypersingulières. La thèse porte sur une nouvelle formulation permettant d'obtenir une matrice de raideur symétrique sans intégrales hypersingulières, dans le cas de problèmes plans. Quelques applications numériques sont abordées pour des problèmes courants rencontrés en géotechnique

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00607258
Date17 September 2010
CreatorsNguyen, Minh Tuan
PublisherUniversité Paris-Est
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0022 seconds