Return to search

Regularidade Lipschitz, invariância da multiplicidade e a geometria dos cones tangentes de conjuntos analíticos / Lipschitz regularity, invariance of the multiplicity and the geometry of tangent cones of analytic sets

SAMPAIO, José Esdon. Regularidade Lipschitz, invariância da multiplicidade e a geometria dos cones tangentes de conjuntos analíticos. 2015. 56 f. Tese (doutorado) - Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em Matemática, Fortaleza-Ce, 2015 / Submitted by Erivan Almeida (eneiro@bol.com.br) on 2015-05-29T18:27:53Z
No. of bitstreams: 1
2015_tese_jesampaio.pdf: 1161657 bytes, checksum: 388d75dfad46f85ce32ce24b79963987 (MD5) / Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2015-06-01T10:56:02Z (GMT) No. of bitstreams: 1
2015_tese_jesampaio.pdf: 1161657 bytes, checksum: 388d75dfad46f85ce32ce24b79963987 (MD5) / Made available in DSpace on 2015-06-01T10:56:02Z (GMT). No. of bitstreams: 1
2015_tese_jesampaio.pdf: 1161657 bytes, checksum: 388d75dfad46f85ce32ce24b79963987 (MD5)
Previous issue date: 2015 / In this paper, it is shown that definable sets bi-Lipschitz homeomorphic have tangent cones bi-Lipschitz homeomorphic. Furthermore, in the case of complex analytical sets, Lipschitz regularity or strong topological regularity implies analytical regularity. It is also done a complete study on regularity of real analytic sets. Furthermore, it is given a complete classification for complex analytical curves in space and are shown some results about invariance of the multiplicity. In particular, it is shown that the multiplicity of real analytical sets is invariant mod 2 under diffeomorphisms. / Neste texto, é mostrado que conjuntos definíveis bi-Lipschitz homeomorfos tem cones tangentes bi-Lipschitz homeomorfos. Além disso, no caso de conjuntos analíticos complexos, regularidade Lipschitz ou regularidade topológica forte implica em regularidade analítica. Também é feito um estudo regularidade de conjuntos analíticos reais. Ademais, é dada uma classificação completa para curvas analíticas complexas no espaço e são apresentados alguns resultados sobre invariância da multiplicidade. Em especial, é mostrado que a multiplicidade mod 2 de conjuntos analíticos reais é invariante por difeomorfismos.

Identiferoai:union.ndltd.org:IBICT/oai:www.repositorio.ufc.br:riufc/12545
Date January 2015
CreatorsSampaio, José Edson
ContributorsLev, Birbrair, Fernandes, Alexandre César Gurgel
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UFC, instname:Universidade Federal do Ceará, instacron:UFC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds