Return to search

Polypeptide-Based Nanoscale Materials

Self-assembly has emerged as a promising technique for fabrication of novel hybrid materials and nanostructures. The work presented in this thesis has been focused on developing nanoscale materials based on synthetic de novo designed polypeptides. The polypeptides have been utilized for the assembly of gold nanoparticles, fibrous nanostructures, and for sensing applications. The 42-residue polypeptides are designed to fold into helix-loop-helix motifs and dimerize to form four-helix bundles. Folding is primarily driven by the formation of a hydrophobic core made up by the hydrophobic faces of the amphiphilic helices. The peptides have either a negative or positive net charge at neutral pH, depending on the relative abundance of Glu and Lys. Charge repulsion thus prevents homodimerization at pH 7 while promoting hetero-dimerization through the formation of stabilising salt bridges. A Cys incorporated in position 22, located in the loop region, allowed for directed, thiol-dependent, immobilization on planar gold surfaces and gold nanoparticles. The negatively charged (Glu-rich) peptide formed homodimers and folded in solution at pH < 6 or in the presence of certain metal ions, such as Zn2+. The folding properties of this peptide were retained when immobilized directly on gold, which enabled reversible assembly of gold nanoparticles resulting in aggregates with well-defined interparticle separations. Particle aggregation was found to induce folding of the immobilized peptides but folding could also be utilized to induce aggregation of the particles by exploiting the highly specific interactions involved in both homodimerization and hetero-association. The possibility to control the assembly of polypeptide-functionalized gold nanoparticles was utilized in a colorimetric protein assay. Analyte binding to immobilized ligands prevented the formation of dense particle aggregates when subjecting the particles to conditions normally causing extensive aggregation. Analyte binding could hence easily be distinguished by the naked eye. Moreover, the peptides were utilized to assemble gold nanoparticles on planar gold and silica substrates. Fibrous nanostructures were realized by linking monomers through a disulphide-bridge. The disulphide-linked peptides were found to spontaneously assemble into long and extremely thin peptide fibres as a result of a propagating association mediated by folding into four-helix bundles. / Ingenjörer och vetenskapsmän har ofta inspirerats av naturen i sökandet efter lösningar på tekniska problem. Allt ifrån byggnadskonstruktioner, flygplansvingar, kompositmaterial till kardborrebandet har skapats med utgångspunkt från förebilder i naturen. Många av de material och konstruktioner som återfinns i naturen har åtråvärda egenskaper som är svåra att erhålla i syntetiska matrial med traditionell teknik. Även om vi i flera fall kan härma sammansättningen och formen blir resultatet inte nödvändigtvis det samma. Den största skillnaden mellan syntetiska material och material producerade av levande organismer är hur deras komponenter sinsemellan är organiserade och sammansatta. I syntetiska material är komponenterna ofta inbördes mer eller mindre slumpvis ordnade medan de i biologiska material är organiserade med en oerhörd precision som sträcker sig ända ned på molekyl- och atomnivå. Naturens byggstenar har genom evolutionens gång förfinats för att spontant kunna organisera sig och bilda komplexa material  och strukturer. Denna process, som styrs genom att många svaga krafter inom och mellan byggstenarna samverkar, kallas ofta för självorganisering och är en förutsättning för allt liv. Självorganisering har också blivit en allt viktigare metod inom nanotekniken för att konstruera material och strukturer med nanometerprecision. I den här avhandlingen beskrivs en typ av självorganiserande material där byggstenarna utgörs av nanometerstora guldpartiklar och syntetiska proteiner. De syntetiska proteinerna är designade för att efterlikna naturliga biomolekyler och antar en välbestämd tredimensionell struktur när två av dem interagerar med varandra. Denna interaktion är mycket specifik men kan styras genom att variera kemiska parametrar som surhet och jonstyrka vilket ger en möjlighet att påverka och kontrollera proteinernas struktur. Proteinerna har vidare modifierats för att spontant organisera sig till fibrer som är flera mikrometer långa men endast några nanometer tjocka. Proteinfibrer utgör en mycket viktig typ av strukturer i biologiska system och finns i alltifrån spindelväv till muskler. Syntetiska proteinfibrer är därför både ett intressant modellsystem och ett material med många potentiellt intressanta användningsområden. Genom att fästa de syntetiska proteinerna på ytan av guldnanopartiklar går interaktionerna mellan partiklarna att kontrollera på samma sätt som interaktionerna mellan proteinerna. Krafterna mellan proteinerna och interaktionerna involverade i proteinernas veckning har använts för att reversibelt aggregera och organisera nanopartiklarna. Ett antal olika byggstenar har studerats och utvecklats till något som liknar ett mycket enkelt nano-Lego, som på en given signal spontant bygger ihop sig eller trillar isär. Guldnanopartiklar är intressanta eftersom de är stabila och lätta att modifiera kemiskt men också på grund av deras optiska egenskaper som ger dem en ovanligt vacker vinröd färg. Färgen uppstår på grund av partiklarnas ringa storlek och varierar naturligt med egenskaperna hos den omgivande miljön. Detta gör det enkelt att studera hur partiklarna interagerar eftersom de byter färg när de närmar sig varandra, men gör dem också intressanta för sensortillämpningar. En enkel och robust sensor beskrivs i avhandlingen där syntetiska proteiner, speciellt utformade för att upptäcka och binda andra molekyler, har fästs på nanopartiklarna. Med partiklarnas hjälp går det att med blotta ögat detektera ett mänskligt protein i koncentrationer under ett tusendels gram per liter. En tidig diagnos av sjukdomstillstånd kan i de flesta fall avsevärt underlätta behandlingen och behovet av enkla sensorer för att bestämma närvaro och koncentration av medicinskt intressanta molekyler är därför mycket stort.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-15124
Date January 2008
CreatorsAili, Daniel
PublisherLinköpings universitet, Sensorvetenskap och Molekylfysik, Linköpings universitet, Tekniska högskolan, Linköping : Linköping University Electronic Press
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1207

Page generated in 0.0108 seconds