By integrating Nanotechnology and MEMS technology, this thesis aims to research a flexural-plate wave (FPW) sensor for testing Immunoglobulin E (IgE) concentration in blood serum, a significant index for the diagnosis of allergies. The traditional methods of blood assay are time-consuming and costly, and its average accuracy of only 60-70 percent. After compare the major four kinds of acoustic sensor, the FPW sensor demonstrates a high accuracy, high sensitivity, low operation frequency, low diagnosis time and low cost.
This thesis utilizes a reactive RF sputter system to deposite the piezoelectric ZnO thin film. To obtain the high C-axis orientation (002) characteristic of ZnO membrane, many parameters such as substrate temperature, Ar/O2 ratio and RF power have been adjusted and optimized during the sputtering process. The effects of varied parameters will be investigated and analysis by using SEM or XRD facilities.
In this study, we combined the high figure-of-merits ZnO deposition techniques and single-side anisotropic silicon etch process to implement the process integration of FPW device. Finally, this research has demonstrated a 50-60MHz center frequency can be extracted from such silicon-based FPW microsensor.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0713106-172443 |
Date | 13 July 2006 |
Creators | Chang, Yi-Wen |
Contributors | I-Yu Huang, Shiang-Hwua Yu, Lieh-hsi Lo, Jin-Chern Chiou, Ruey-Shing Huang |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0713106-172443 |
Rights | campus_withheld, Copyright information available at source archive |
Page generated in 0.0017 seconds