Nous nous intéressons à la modélisation de formes complexes de type structures arborescences, formes lacunaires ou surfaces rugueuses. Ces formes sont intéressantes de par leurs propriétés physiques particulières :objets légers, économie de matière, résistance mécanique, absorption acoustique importante. Les modèles basés sur le concept de la géométrie fractale permettent de générer de telles formes et notamment les formes auto-similaires. A partir des travaux de Barnsley sur les systèmes itérés de fonctions, Tosan et al, ont proposé une extension, Boundary Controled Iterated Funcions Systems (BCIFS) pour contrôler plus facilement les formes et faciliter leur description. Nous nous intéressons aux propriétés différentielles des formes décrites par BCIFS. Nous proposons une définition plus générale d'espace tangent qui permet de caractériser le comportement de cas non-classiquement différentiables.Nous montrons que l'étude du comportement différentiel peut alors se faire simplement par analyse des valeurs propres et vecteurs propres généralisés des opérateurs de subdivision. Il devient alors possible de contrôler ces propriétés différentielles. Nous présentons une application de nos résultats, en proposant une méthode pour construire des raccords entre deux structures définies par des processus de subdivision différents. Cette méthode est appliquée pour la construction d'un raccord entre une surface de subdivision de Doo-Sabin(schéma dual) et une surface de subdivision de Catmull-Clark (schéma primal) / The fractal geometry is a relatively new branch of mathematics that studies complex objects of non-integer dimensions. It finds applications in many branches of science as objects of such complex structure often poses interesting properties. In 1988 Barnsley presented the Iterative Func-tion System (IFS) model that allows modelling complex fractal shapes with only a limited set of contractive transformations. Later many other models were based on the IFS model such as Language-Restricted IFS,Projective IFS, Controlled IFS and Boundary Controlled IFS. The lastto allow modelling complex shapes with control points and specific topol-ogy. These models cover classical geometric models such as B-splines and subdivision surfaces as well as fractal shapes.This thesis focuses on the analysis of the differential behaviour of the shapes described with Controlled IFS and Boundary Controlled IFS. Wederive the necessary and sufficient conditions for differentiability for ev-erywhere dense set of points. Our study is based on the study of the eigenvalues and eigenvectors of the transformations composing the IFS. We apply the obtained conditions to modelling curves in surfaces. We describe different examples of differential behaviour presented in shapes modelled with Controlled IFS and Boundary Controlled IFS. We also use the Boundary Controlled IFS to solve the problem of connecting different subdivision schemes. We construct a junction between Doo-Sabin and Catmull-Clark subdivision surfaces and analyse the differential behaviour of the intermediate surface
Identifer | oai:union.ndltd.org:theses.fr/2013DIJOS062 |
Date | 20 December 2013 |
Creators | Podkorytov, Sergey |
Contributors | Dijon, Gentil, Christian, Sokolov, Dmitry |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English, French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds