Return to search

The Hurst parameter and option pricing with fractional Brownian motion

In the mathematical modeling of the classical option pricing models it is assumed that the underlying stock price process follows a geometric Brownian motion, but through statistical analysis persistency was found in the log-returns of some South African stocks and Brownian motion does not have persistency. We suggest the replacement of Brownian motion with fractional Brownian motion which is a Gaussian process that depends on the Hurst parameter that allows for the modeling of autocorrelation in price returns. Three fractional Black-Scholes (Black) models were investigated where the underlying is assumed to follow a fractional Brownian motion. Using South African options on futures and warrant prices these models were compared to the classical models. / Dissertation (MSc)--University of Pretoria, 2012. / Mathematics and Applied Mathematics / unrestricted

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:up/oai:repository.up.ac.za:2263/26521
Date01 February 2013
CreatorsOstaszewicz, Anna Julia
ContributorsVan Zyl, A.J., ania.ostaszewicz@up.ac.za
PublisherUniversity of Pretoria
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeDissertation
Rights© 2012 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria

Page generated in 0.0052 seconds