OBJECTIVES: This study examined mechanical, chemical and microstructural properties of multilayer zirconia materials that are composed of layers of different forms of zirconia with varying translucency. Their resistance to low temperature degradation and their properties were compared to each other, and to monolithic zirconia.
METHODOLOGY: “ZirCAD Prime” from Ivoclar Vivadent, “AxZir XT Multilayer Dental Zirconia” from Axsys Dental Solutions, and “inCoris ZI” from Dentsply Sirona, were examined. Twenty specimens were created from each material, half of which were aged. Specimens were examined for the following: Three point bending flexural strength, grain size, microhardness, indentation fracture toughness, warp and elemental composition.
RESULTS: inCoris ZI had significantly higher flexural strength than ZirCAD Prime, which in turn had significantly higher strength than AxZir XT. The flexural strength values were 1113.55MPa, 857.21MPa and 625.77MPa, respectively. Grain size patterns were noted in multilayer specimens; more translucent layers had significantly larger grain sizes. AxZir XT’s incisal most layer average grain size was 0.988μm, whereas ZirCAD Prime’s was 1.172μm. The dentin most layer of AxZir XT average grain size was 0.529μm whereas ZirCAD Prime’s was 0.470μm. Microhardness results showed few significant differences between layers. The highest microhardness was found in AxZir XT’s incisal most layer, after aging, with a value of 13.502 GPa. The lowest was found in the aged inCoris ZI specimen, with a value of 10.775 GPa. In the ZirCAD Prime, fracture toughness was highest in the dentin most layer with a value of 8.88 MPa m¹/², compared to its incisal most layer that had a value of 4.92 MPa m¹/². This pattern was not seen in AxZir XT, where the dentin most layer had a value of 8.36 MPa m¹/², and the incisal most layer had a value of 6.40 MPa m¹/². Hydrothermal aging had detrimental and significant impacts on fracture toughness of all materials. Elemental composition analysis revealed predictable levels of elements or molecules in ZirCAD Prime. and inCoris ZI, but not within the AxZir XT. 5Y levels were seen in ZirCAD Prime’s incisal layer, and 2.5-3Y in the dentin most layer. inCoris ZI had constant levels of 3Y, but AxZir XT had no distinct level of Yttria in its layers.
CONCLUSIONS:
1. Flexural Strength of multilayer materials was significantly lower than monolithic zirconia.
2. Grain sizes appeared largest in translucent incisal-most layers, with significant differences between them and the opaque dentin-most layers.
3. The elemental composition analysis showed an expected level of 3 mol% Yttria in the inCoris ZI with varying amounts by layer in the ZirCAD Prime from 3Y (cervical) to 5Y (incisal), but there was no clear gradation in the AxZir XT.
4. Some significant differences were seen between the materials and their layers in the microhardness tests. inCoris ZI had significantly lower values than both ZirCAD Prime and AxZir XT. The highest values were found within AxZir Xt.
5. Fracture toughness was significantly higher in the dentin-most layer compared to the incisal most-layer of ZirCAD Prime but not in AxZir XT.
6. LTD significantly decreased some fracture toughness test values. inCoris ZI, AxZir XT’s 1st incisal layer and ZirCAD Prime’s 2nd transition layer had significant decreases in fracture toughness after aging.
7. LTD had no impact on flexural strength or microhardness values.
8. LTD significantly decreased grain size of inCoris ZI.
Identifer | oai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/46665 |
Date | 01 September 2023 |
Creators | Khashawi, Hussain Ali |
Contributors | Giordano, Russel |
Source Sets | Boston University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0017 seconds