Geopolymers (GPs) are a new class of inorganic polymers that have been considered as good candidate materials for many applications, including fire resistant and refractory panels, adhesives, and coatings, waste encapsulation material, etc. The aim of this study is to establish relationship between structural and mechanical properties of geopolymers with different chemical compositions. The metakaolin-based geopolymers were prepared by mechanically mixing metakaolin and alkaline silicate aqueous solutions to obtain samples with SiO2/Al2O3 molar ratio that ranges from 2.5 to 5, and Na/Al or K/Al atomic ratios equal to 1. Geopolymer samples were cured in a laboratory oven at 80°C and ambient pressure for different times in the sealed containers. Structural characterization of the samples with different chemical compositions was carried out using X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Nuclear Magnetic-Resonance (NMR) spectroscopy and Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS). The mechanical characterization included Micro-indentation, Vickers indentation and fracture toughness measurement, as well as compressive testing.
It was found that structure and mechanical properties of GPs depend on their chemical composition. The Na-GPs with ratio 3 have a highest compressive strength and Young‘s modulus of 39 MPa and 7.9 GPa, respectively. The results of mechanical testing are discussed in more detail in this thesis and linked to structural properties of processed geopolymers.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2010-08-8506 |
Date | 2010 August 1900 |
Creators | Kim, Hyunsoo |
Contributors | Radovic, Miladin |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | thesis, text |
Format | application/pdf |
Page generated in 0.0023 seconds