Return to search

ADAPTIVE VERTICAL SEISMIC ISOLATION FOR EQUIPMENT

Seismic isolation systems are widely recognized as beneficial for protecting both acceleration- and displacement-sensitive nonstructural systems and components. Furthermore, adaptive isolation systems have been shown to enable engineers to achieve various performance goals under multiple hazard levels. These systems have been implemented for horizontal excitation, but there has been very limited research on isolation for vertical excitation. Thus, this paper seeks to evaluate the benefit of adaptive vertical isolation systems for component isolation, specifically for nuclear plants. To do this, three vertical isolation systems are designed to achieve multiple goals: a linear spring and a linear damper (LSLD), a linear spring and a nonlinear damper (LSND) and a nonlinear spring and a linear damper (NSLD). To investigate the effectiveness of the proposed systems, a stiff piece of equipment is considered at an elevated floor within a power plant. A set of 30 triaxial ground motions is used to investigate the seismic response of the equipment. The maximum isolation displacement and equipment acceleration are used to assess the effectiveness of the three isolation systems. While all systems significantly reduce the seismic accelerations on the equipment compared to the fixed-base case, a LSND system is shown to exhibit superior seismic performance across multiple hazard levels. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/24579
Date January 2019
CreatorsNajafijozani, Mohammadreza
ContributorsTait, Michael, Civil Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0018 seconds