Rigid body targets in exo-atmospheric free fall undergo motions defined by classical dynamics. Radar signatures provide a platform for estimation of various parameters relating to the motion and scattering characteristics of the target. This thesis provides a Radar based, physics constrained, estimator of the motion which generates these signatures. As part of this analysis, it defines a motion model for a ``nearly' axially symmetric target in terms of its inertial parameters. We show that the time-varying range to a point on the rigid body can be expressed in the form of an amplitude and frequency modulated signal. The frequency decomposition of this range function is used to estimate the target's elliptic modulus, an inertial parameter directly related to the asymmetry. This result has immediate application as a tool to assist the radar analyst in further target characterization and constitutes and essential step to the full reconstruction of a target's geometry from its signature.
Identifer | oai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-dissertations-1110 |
Date | 14 April 2006 |
Creators | Hatch, Nicholas Adam |
Contributors | Homer F. Walker, Committee Member, Kevin A. Clements, Committee Member, David Cyganski, Advisor |
Publisher | Digital WPI |
Source Sets | Worcester Polytechnic Institute |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Doctoral Dissertations (All Dissertations, All Years) |
Page generated in 0.0018 seconds