<p> Polymerization of styrene was carried out in continuous and batch reactors using azobisis obutyronitrile as initiator and benzene as solvent. Monomer conversion, molecular weight distribution (MWD) and viscosity were measured.</p> <p> Corrections to the conventional kinetic mechanism using results from the continuous reactor were determined. These corrections were applied to the batch reactor kinetic model and the conversion and MWD thus predicted were compared to experimental results. It was found that the corrections applied to the batch system were not adequate to give accurate predictions of conversion and MWD.</p> <p> A short computer study of the effect of oscillating monomer flow and temperature, as opposed to steady flow, on a transient continuous reactor was also carried out. It was found from this study that at low conversions oscillations in monomer flow will not affect the time average conversion and molecular weight. Oscillations in temperature caused an increase in time average conversion and a decrease in time average molecular weight as compared to results obtained when the reactor was operated at a steady temperature which was the average of the oscillating temperatures.</p> / Thesis / Master of Engineering (MEngr)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/20994 |
Date | 09 1900 |
Creators | Pearce, S. Lawrence |
Contributors | Hamielec, A. E., Chemical Engineering |
Source Sets | McMaster University |
Language | en_US |
Detected Language | English |
Type | Thesis |
Page generated in 0.0017 seconds