Return to search

Insulation Coordination of Solid State Devices Connected Directly to the Electric Power Distribution System

abstract: With the penetration of distributed renewable energy and the development of

semiconductor technology, power electronic devices could be utilized to interface re-

newable energy generation and the distribution power grid. However, when directly

connected to the power grid, the semiconductors inside the power electronic devices

could be vulnerable to the power system transient, especially to lightning strikes.

The work of this research focuses on the insulation coordination of power elec-

tronic devices connected directly to the power distribution system. The Solid State

Transformer (SST) in Future Renewable Electric Energy Delivery and Management

(FREEDM) system could be a good example for grid connected power electronic

devices. Simulations were conducted in Power Systems Computer Aided Design

(PSCAD) software. A simulation done to the FREEDM SST showed primary re-

sults which were then compare to simulation done to the grid-connected operating

Voltage Source Converter (VSC) to get more objective results.

Based on the simulation results, voltage surges caused by lightning strikes could

result in damage on the grid-connected electronic devices. Placing Metal Oxide Surge

Arresers (MOSA, also known as Metal Oxide Surge Varistor, MOV) at the front lter

could provide eective protection for those devices from power transient. Part of this

research work was published as a conference paper and was presented at CIGRE US

National Conference: Grid of the Future Symposium [1] and North American Power

Symposium [2]. / Dissertation/Thesis / Masters Thesis Engineering 2017

Identiferoai:union.ndltd.org:asu.edu/item:45531
Date January 2017
ContributorsRong, Xuening (Author), Karady, George G (Advisor), Heydt, Gerald T (Committee member), Ayyanar, Raja (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format108 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.002 seconds