Splitter plates are passive flow control devices for reducing drag and suppressing vortex shedding from bluff bodies. Most studies of splitter plates involve the flow around an “infinite” circular cylinder, however, in the present study the flow around a surface-mounted finite-height circular cylinder, with a wake-mounted splitter plate, was studied experimentally in a low-speed wind tunnel using a force balance and single-component hot-wire anemometry. Four circular cylinders of aspect ratios AR = 9, 7, 5 and 3 were tested for a Reynolds number range of Re = 1.9×10^4 to 8.2×10^4. The splitter plates had lengths, relative to the cylinder diameter, of L/D = 1, 1.5, 2, 3, 5 and 7, thicknesses ranging from T/D = 0.10 and 0.15, and were the same height as the cylinder being tested. The cylinders were partially immersed in a flat-plate turbulent boundary layer, where the range of boundary layer thickness relative to the cylinder diameter was δ/D = 1.4 to 1.5.
Measurements were made of the mean drag force coefficient, the Strouhal number at the mid-height position, and the Strouhal number and power spectra along the cylinder height. For all four finite circular cylinders, the splitter plates were effective at reducing the magnitude of the Strouhal number, and weakening or even suppressing vortex shedding, depending on the specific combination of AR and L/D. Compared to the case of an infinite circular cylinder, the splitter plate is less effective at reducing the mean drag force coefficient of a finite circular cylinder. The largest drag reduction was obtained for the cylinder of AR = 9 and splitter plates of L/D = 1 to 3, while negligible drag reduction occurred for the shorter cylinders.
Identifer | oai:union.ndltd.org:USASK/oai:ecommons.usask.ca:10388/ETD-2011-09-171 |
Date | 2011 September 1900 |
Contributors | Sumner, David, Bergstrom, Donald J. |
Source Sets | University of Saskatchewan Library |
Language | English |
Detected Language | English |
Type | text, thesis |
Page generated in 0.0022 seconds