In this report, electrostatic force microscopy (EFM), zeta-potential analyzer, circular dichroism Spectrophotometer and Fourier transform infrared spectroscopy are used to study the electrostatic property of surface on insulin fibril. EFM provides a simultaneous probe of topography and electrostatic property with highly local resolution in nanometer-scale. To understand the correlation between charge distribution on fibril surface and structure transformation, we controlled the incubation time and salt concentration. The results show that the surface charge increases with incubation time, and with the salt concentration increased, the pitch is found to decrease, variation of charge distribution are increased. In addition, we also have evaluated influence of amino acid sequence on growth rate of fibril associated with bovine, porcine and human insulin by atomic force microscopy and circular dichroism Spectrophotometer. The experimental results show that the number of hydrophilic groups on the peptide sequence will affect the speed of fibril generated, and the location of hydrophilic groups on the peptide sequence will affect the stability of the fibril under the frozen environment.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0803112-155349 |
Date | 03 August 2012 |
Creators | Yang, Shu-Wei |
Contributors | Shuchen Hsieh, Chao-Ming Chiang, Hui-Ting Chen |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0803112-155349 |
Rights | user_define, Copyright information available at source archive |
Page generated in 0.0062 seconds