Return to search

The Development of Ecological Functions in Created Forested Wetlands

Wetland mitigation has become a 2.4 billion dollar per year industry in the U.S. and in Virginia it leads to the replacement of 77 ha of palustrine forested wetlands (PFWs) per year with mitigation wetlands, including created forested wetlands (CFWs). Mitigation hinges on the idea that compensation wetlands lead to “no net loss of wetland function” when compared to impacted wetlands. We assessed the functions of provision of habitat and biogeochemical functions associated with production of biomass, the retention and removal of nutrients and the accumulation of soil C over 8 years in seven CFWs of approximately 11 and 20 years and compared them to natural reference wetlands (NRWs). CFW plant communities were similar to NRWs in all measured parameters in the herbaceous and shrub/sapling strata and in all strata combined. However, non-native dominance showed a significant positive linear relationship with CFW age. In the tree strata, 11 year old (yo) CFWs had lower richness than NRWs and both age classes of CFWs had lower FQI than NRWs. NRWs held 10 to 20 times more carbon in woody biomass than CFWs. Tree species composition was significantly different between CFWs and NRWs, however NRW trees were similar to CFW saplings. 11 yo CFWs held lower percentages of C, N and P and had higher Db than NRWs in both the 0-10 and 10-20 cm depth. 20 yo CFWs developed similar levels of %C, %P, bulk density (Db), and nutrient ratios in the surface and displayed rapid increases in %C and %N over 8 years. However, CFWs offered 45% lower soil total soil C storage and 50% lower %N. Furthermore, all CFWs stored lower nutrient levels than NRWs in the 10-20 cm soil depth. We found that FQI correlated positively with total C accumulation rates in woody biomass and soil C, indicating that biogeochemical function and the provision of habitat can be complimentary in CFWs. Finally, 11 and 20 yo CFWs adhered to the regulatory performance standards established for Virginia in terms of stems per ha and wetland indicator status, but all wetlands (including NRWs) failed to achieve <5% non-native species cover.

Identiferoai:union.ndltd.org:wm.edu/oai:scholarworks.wm.edu:etd-3072
Date01 January 2013
CreatorsCharles, Sean P.
PublisherW&M ScholarWorks
Source SetsWilliam and Mary
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations, Theses, and Masters Projects
Rights© The Author

Page generated in 0.002 seconds