Return to search

Physical Oceanography, Larval Dispersal, and Settlement Across Nearshore Fronts

The larvae of coastal species interact with nearshore currents that are complex and can alter dispersal. I investigated two sites in southern Oregon with different nearshore hydrodynamics: the first site, Sunset Bay, is a small cove with a topographic front that extends across the mouth during upwelling-favorable winds. Using holey sock drogues at 1.5 m and 5.5 m depths and surface drifters at 10 cm depth, I found that, when the front was present, water at 1.5 m was retained within the bay whereas water was exchanged across the front at a depth of 5.5 m. Surface drifters indicated a surface convergence. Surface plankton tows on either side and within the frontal convergence (a shore-parallel foam line) found significantly higher concentrations of barnacle cyprids, crab megalopae and zoea, polychaete larvae, platyhelminthes juveniles, isopods, amphipods, harpacticoid copepods, and fish eggs. Crustacean nauplii (barnacle, euphausiid, and copepod) and calanoid copepods were not concentrated in the convergence, and when the front and foam line were absent, no taxa were concentrated. Plankton tows taken within the foam line as it dissipated shoreward during a wind-reversal event found that concentrations of cyprids, megalopae, and gastropod veligers remained high as the foam line moved, suggesting that it acts as a moving convergence propagating competent larvae shoreward.

I measured settlement of two taxa at Sunset Bay and Shore Acres, an open-coast site <2 km away. Barnacle settlement measured every other day from June-September 2013 was significantly cross-correlated with the maximum daily tidal height at lags of -2 days at Sunset Bay and +2 and +4 days at Shore Acres. Settlement was also significantly negatively cross-correlated with wave height at a lag of -4 days at Sunset Bay. Coralline algae settlement measured during eight 48-hr periods in July-August 2013 was significantly negatively correlated with wave height (n = 8, R2 = 0.76, P = 0.0049) at Shore Acres but not at Sunset Bay. Despite the close proximity of the Sunset Bay and Shore Acres sites, settlement patterns differed between taxa, suggesting that differences in nearshore hydrodynamics might affect the supply of water and larvae to shore.

This dissertation includes unpublished co-authored material.

Identiferoai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/18711
Date14 January 2015
CreatorsJarvis, Marley
ContributorsRoy, Barbara
PublisherUniversity of Oregon
Source SetsUniversity of Oregon
Languageen_US
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
RightsAll Rights Reserved.

Page generated in 0.0176 seconds