Return to search

IR spectroscopy of planetary regolith analogues, lunar meteorites, and Apollo soils

The main objectives of this study are to determine how various physical and chemical properties of geologic samples can be investigated by Fourier Transform InfraRed (FTIR) spectral analyses, and determine how each of these individual properties uniquely alter the mid-infrared spectrum. Of particular interest is how extraterrestrial samples differ (spectrally) from terrestrial samples, and how such findings can be applied to current and future missions to airless planetary bodies (such as Diviner Lunar Radiometer, aboard the Lunar Reconnaissance Orbiter, and the Mercury Thermal Radiometer on BepiColombo). As such, a range of geological samples have been analysed including terrestrial rocks (anorthosite, granite, grabbro etc.), mineral standards (common rock-forming minerals), lunar meteorites (from Miller Range, Antarctica), and Apollo 14, 15, and 16 soils. A new technique to analyse such samples has been developed and implemented as part of this study: FTIR spectral imaging of unconsolidated samples (powders and soils) to obtain modal mineralogy estimates. Such estimates are comparable to QEMSCAN analyses and spot point counting of the same samples. This is particularly relevant for the non-destructive analysis of Apollo soil samples (bulk and sieved fractions). Individual spectra of polished terrestrial and extraterrestrial samples have been obtained in preparation for the creation of a spectral database. Such samples also have coupled chemical composition information via Electron Probe MicroAnalysis (EPMA). To have a spectrum and an associated chemical composition for each mineral in a database is unique compared to other spectral databases. Analyses of lunar meteorites resulted in an understanding of how shock (caused by hypervelocity impacts) alters the physical and spectral properties of lunar minerals. FTIR microscopy of individual minerals and phases in the meteorites were coupled with optical and cathodoluminescence (CL) imaging to identify the level of shock obtained by each mineral and phase. The FTIR reflectance bands of plagioclase merge with increasing shock pressure until a single, low-reflectance broad peak is displayed by the most highly shocked plagioclase (>45 GPa), and a dark-red colour is present in CL images. FTIR and QEMSCAN analyses of Apollo regolith samples have provided an understanding of the spectral effects of bulk mineralogy, maturity (a measure of the time spent at the lunar surface), grain size, and mineral chemistry. Using such information, the modal mineralogy of each sample has been estimated, one of which had not previously been analysed for its modal mineralogy. Samples from the same Apollo missions present similar spectral features, meaning FTIR spectroscopy can be used to identify the origin of lunar soils. A weak correlation in maturity with a spectral feature termed the Christiansen Feature has been found for lunar samples. Related to maturity, FTIR spectra of individual agglutinates (a product of space weathering) have been obtained and the spectral properties of agglutinates (decreased %Reflectance values of the region sensitive to geological materials) resemble those of highly mature lunar soils.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:764716
Date January 2018
CreatorsMartin, Dayl
ContributorsWogelius, Roy ; Joy, Katherine
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/ir-spectroscopy-of-planetary-regolith-analogues-lunar-meteorites-and-apollo-soils(366e3992-f823-4e88-8c5c-0fcea1d25fe8).html

Page generated in 0.0025 seconds