Return to search

On Poicarés Uniformization Theorem

<p>A compact Riemann surface can be realized as a quotient space $\mathcal{U}/\Gamma$, where $\mathcal{U}$ is the sphere $\Sigma$, the euclidian plane $\mathbb{C}$ or the hyperbolic plane $\mathcal{H}$ and $\Gamma$ is a discrete group of automorphisms. This induces a covering $p:\mathcal{U}\rightarrow\mathcal{U}/\Gamma$.</p><p>For each $\Gamma$ acting on $\mathcal{H}$ we have a polygon $P$ such that $\mathcal{H}$ is tesselated by $P$ under the actions of the elements of $\Gamma$. On the other hand if $P$ is a hyperbolic polygon with a side pairing satisfying certain conditions, then the group $\Gamma$ generated by the side pairing is discrete and $P$ tesselates $\mathcal{H}$ under $\Gamma$.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-7968
Date January 2006
CreatorsBartolini, Gabriel
PublisherLinköping University, Department of Mathematics, Matematiska institutionen
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, text

Page generated in 0.0018 seconds