Return to search

On Poicarés Uniformization Theorem

A compact Riemann surface can be realized as a quotient space $\mathcal/\Gamma$, where $\mathcal$ is the sphere $\Sigma$, the euclidian plane $\mathbb$ or the hyperbolic plane $\mathcal$ and $\Gamma$ is a discrete group of automorphisms. This induces a covering $p:\mathcal\rightarrow\mathcal/\Gamma$. For each $\Gamma$ acting on $\mathcal$ we have a polygon $P$ such that $\mathcal$ is tesselated by $P$ under the actions of the elements of $\Gamma$. On the other hand if $P$ is a hyperbolic polygon with a side pairing satisfying certain conditions, then the group $\Gamma$ generated by the side pairing is discrete and $P$ tesselates $\mathcal$ under $\Gamma$.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-7968
Date January 2006
CreatorsBartolini, Gabriel
PublisherLinköpings universitet, Matematiska institutionen, Matematiska institutionen
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds