Return to search

A study of electrochemical properties of Ni-CGO composite for SOFC anode

For the past few decades, Ni-YSZ (yttria-stabilized zirconia) has been the dominate anode material of high temperature (>1000¢J) solid oxide fuel cells (SOFCs). However, the conductivity of Ni/YSZ is not enough when the operation temperature is in the intermediate rage of 500~700¢J. Instead, Ni/CGO is a good candidate as the anode material of intermediate temperature SOFCs (IT-SOFC), due to its enhanced conductivity.
This work was aimed at the preparation of Ni/CGO composite anodes using the electrostatic assisted ultrasonic spray pyrolysis (EAUSP) method. By properly adjusting the deposition parameters, highly porous composite films with desired phases and microstructure rendering low electrode impedances were obtained. The results indicated that deposition temperature and the applied voltage dictated the evolution of film morphology and hence the interface impedance between the electrode and the electrolyte.
Therefore, the optimum deposition parameters for the best microstructure and hence minimum interface impedance were 12 kV for the applied voltage, 6 : 4 for the Ni-CGO mole ratio, 450¢J for the deposition temperature. The microstructure thus obtained possessed a cauliflower-like structure with high porosity. The resultant interface impedance at 550¢J was 0.09 Ωcm2, lower than that obtained from the conventional anode preparation routes of dip-casting (0.14 Ωcm2) or mechanical mixing (0.12 Ωcm2).

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0629106-143359
Date29 June 2006
CreatorsChen, Jing-Chiang
ContributorsHong-Yang Lu, Tzu-Chien Jeffrey Hsu, Bing-Hwai Hwang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0629106-143359
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0021 seconds