Return to search

NUMERICAL AND EXPERIMENTAL CHARACTERISATION OF CONVECTIVE TRANSPORT IN SOLID OXIDE FUEL CELLS

In this work, numerical and experimental methods are used to characterise the effects of convective transport in an anode-supported tubular solid oxide fuel cell (SOFC). To that end, a computational fluid dynamics (CFD) model is developed to compare a full transport model to one that assumes convection is negligible. Between these two approaches, the variations of mass, temperature, and electrochemical performance are compared. Preliminary findings show that convection serves to reduce the penetration of hydrogen into the anode, and becomes more important as the thickness of the anode increases.
The importance of the permeability of SOFC electrodes on the characterization of convection is also investigated. Experiments performed on Ni-YSZ anodes reveal that permeability is a function of the cell operating conditions, and increases with increasing Knudsen number. An empirical Klinkenberg relation is validated and proposed to more accurately represent the permeability of electrodes in a CFD model. This is a departure from an assumption of constant permeability that is often seen in the literature. It is found that a varying permeability has significant effects on pressure variation in the cell, although according to the electrochemical model developed in this work, variation in permeability is only found to have minor effects on the predicted performance.
Furthermore, it is revealed that an electrochemical model which makes the simplifying assumption of constant overpotential is in error when predicting current and temperature variation. In this work, this is found to predict an unrealistic spatial variation of the current. It is suggested that this approach be abandoned for the solution of a transport equation for potential which couples the anodic and cathodic currents. This will lead to a more realistic prediction of temperature and performance. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2008-11-04 13:54:35.743

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/1576
Date04 November 2008
CreatorsResch, Emmanuel
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Format2979040 bytes, application/pdf
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0016 seconds