This licentiate thesis describes development of modellingtools, experimental physical modelling and numerical modellingto simulate real combustion processes for advanced industrialutility boiler before and after retrofit. The work presents extended study about formation,destruction and control of pollutants, especially NOx, whichoccur during combustion process. The main aim of this work is to improve mixing process incombustion chamber. To do this, the optimization of placementand direction of additional air and fuel nozzles, the physicalmodelling technique is used. By using that method, it ispossible to obtain qualitative information about processes,which occur in the real boiler. The numerical simulationsverify the results from physical modelling, because duringmathematical modelling quantitative informations about flow andmixing patterns, temperature field, species concentration areobtained. Two 3D cases, before and after retrofit, of pulverized fuelfired boiler at 125 MW output thermal power are simulated. Theunstructured mesh technique is also used to discretize theboiler. The number of grid was 427 656 before retrofit and 513362 after retrofit. The comparisons of results of numericalsimulation before and after retrofit are presented. The resultsfrom physical modelling and numerical simulation are alsoshown. Results present that nozzles of additional air and fuel givea considerably better mixing process, uniform temperature fieldand CO2 mass fraction. The whole combustion chamber worksalmost as a "well stirred reactor", while upper part of boilerworks as a "plug flow reactor". Differences between from measured of temperatures andpredicted temperatures are not too big, the maximum differenceis about 100 K. It seems, that calculated temperatures showgood agreement with measurement data. The results illuminate the potential of physical andnumerical modelling methods as promising tools to deal with thecomplicated combustion processes, even for practicalapplication in the industry. <b>Keywords:</b>air staging, fuel staging, boiler, furnace,computational fluid dynamics, numerical simulation, pollutants,physical modeling, pulverized fuel combustion. / NR 20140805
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-1533 |
Date | January 2002 |
Creators | Baranski, Jacek |
Publisher | KTH, Materialvetenskap, Stockholm : Materialvetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds