Magnesium with two-thirds of the density compared to aluminium and one-quarter of steel, intrigues product developers and material scientists due to the light metal’s excellent combination of strength to weight ratio as well as their capability of being produced as a High Pressure Die Cast component compared to other ferrous or light metal alloys. However, a magnesium alloy inherits some concerning drawbacks, limiting the exploitation in structural applications and mechanical design such as automotive, heavy machinery and aerospace components. The need for a magnesium alloy that could withstand a sufficient amount of wear, temperature and corrosive environment, leads towards the investigation and evaluation of a suitable, functional coating as a solution to exploit the evident advantages a magnesium alloy exhibits. A substantial amount of research is required in order to reduce an existing knowledge gap that is the ongoing development in the search for a sufficient functional coating and adherence capability to the highly reactive substrate that is a magnesium alloy. This industrial master thesis is an early stage investigation to evaluate how the currently used aluminium substrate with an electrodeposited coating relate and compares to a heat-treated electroless deposited coating through tribological and thermophysical induced stresses. These properties are tested with proven industrial standard methods resulted in a comprehensive conclusion and discussion regarding the feasibility of applying the coating onto a commercial magnesium alloy closely related to the Mg-alloy developed by Husqvarna and thereby contributing to technological advances to the highly relevant topic within product development in materials engineering.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hj-53096 |
Date | January 2021 |
Creators | Albo Zieme, Louise, Bergstedt, Pontus |
Publisher | Jönköping University, JTH, Industriell produktutveckling, produktion och design |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds