Return to search

Classification in Functional Data Analysis : Applications on Motion Data

Anterior cruciate knee ligament injuries are common and well known, especially amongst athletes.These injuries often require surgeries and long rehabilitation programs, and can lead to functionloss and re-injuries (Marshall et al., 1977). This work aims to explore the possibility of applyingsupervised classification on knee functionality, using different types of models, and testing differentdivisions of classes. The data used is gathered through a performance test, where individualsperform one-leg hops with motion sensors attached to their bodies. The obtained data representsthe position over time, and is considered functional data.With functional data analysis (FDA), a process can be analysed as a continuous function of time,instead of being reduced to finite data points. FDA includes many useful tools, but also somechallenges. A functional observation can for example be differentiated, a handy tool not found inthe multivariate tool-box. The speed, and acceleration, can then be calculated from the obtaineddata. How to define "similarity" is, on the other hand, not as obvious as with points. In this work,an FDA-approach is taken on classifying knee kinematic data, from a long-term follow-up studyon knee ligament injuries.This work studies kernel functional classifiers, and k-nearest neighbours models, and performssignificance tests on the model accuracy, using re-sampling methods. Additionally, depending onhow similarity is defined, the models can distinguish different features of the data. Attempts atutilising more information through incorporation of ensemble-methods, does not exceed the singlemodels it is created from. Further, it is shown that classification on optimised sub-domains, canbe superior to classifiers using the full domain, in terms of predictive power. / Främre korsbandsskador är vanliga och välkända skador, speciellt bland idrottsutövare. Skadornakräver ofta operationer och långa rehabiliteringsprogram, och kan leda till funktionell nedsättningoch återskador (Marshall et al., 1977). Målet med det här arbetet är att utforska möjligheten attklassificera knän utifrån funktionalitet, där utfallet är känt. Detta genom att använda olika typerav modeller, och genom att testa olika indelningar av grupper. Datat som används är insamlatunder ett prestandatest, där personer hoppat på ett ben med rörelsesensorer på kroppen. Deninsamlade datan representerar position över tid, och betraktas som funktionell data.Med funktionell dataanalys (FDA) kan en process analyseras som en kontinuerlig funktion av tid,istället för att reduceras till ett ändligt antal datapunkter. FDA innehåller många användbaraverktyg, men även utmaningar. En funktionell observation kan till exempel deriveras, ett händigtverktyg som inte återfinns i den multivariata verktygslådan. Hastigheten och accelerationen kandå beräknas utifrån den insamlade datan. Hur "likhet" är definierat, å andra sidan, är inte likauppenbart som med punkt-data. I det här arbetet används FDA för att klassificera knärörelsedatafrån en långtidsuppföljningsstudie av främre korsbandsskador.I detta arbete studeras både funktionella kärnklassificerare och k-närmsta grannar-metoder, och ut-för signifikanstest av modellträffsäkerheten genom omprovtagning. Vidare kan modellerna urskiljaolika egenskaper i datat, beroende på hur närhet definieras. Ensemblemetoder används i ett försökatt nyttja mer av informationen, men lyckas inte överträffa någon av de enskilda modellerna somutgör ensemblen. Vidare så visas också att klassificering på optimerade deldefinitionsmängder kange en högre förklaringskraft än klassificerare som använder hela definitionsmängden.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-184963
Date January 2021
CreatorsKröger, Viktor
PublisherUmeå universitet, Institutionen för matematik och matematisk statistik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds