Return to search

Statistická hloubka funkcionálních dat / Statistical Depth for Functional Data

Statistical data depth is a nonparametric tool applicable to multivariate datasets in an attempt to generalize quantiles to complex data such as random vectors, random functions, or distributions on manifolds and graphs. The main idea is, for a general multivariate space M, to assign to a point x ∈ M and a probability distribution P on M a number D(x; P) ∈ [0, 1] characterizing how "centrally located" x is with respect to P. A point maximizing D(·; P) is then a generalization of the median to M-valued data, and the locus of points whose depth value is greater than a certain threshold constitutes the inner depth-quantile region corresponding to P. In this work, we focus on data depth designed for infinite-dimensional spaces M and functional data. Initially, a review of depth functionals available in the literature is given. The emphasis of the exposition is put on the unification of these diverse concepts from the theoretical point of view. It is shown that most of the established depths fall into the general framework of projection-driven functionals of either integrated, or infimal type. Based on the proposed methodology, characteristics and theoretical properties of all these depths can be evaluated simultaneously. The first part of the work is devoted to the investigation of these theoretical properties,...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:351310
Date January 2016
CreatorsNagy, Stanislav
ContributorsHlubinka, Daniel, Claeskens, Gerda, Hušková, Marie
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.002 seconds